Search results

1 – 10 of over 3000
Article
Publication date: 12 January 2024

Elvis Attakora-Amaniampong, Iruka Chijindu Anugwo and Miller Williams Appau

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Abstract

Purpose

This study aims to establish the relationship between indoor environmental quality and residential mobility in student housing in Ghana.

Design/methodology/approach

Using multiple regression and exploratory factor analysis through post occupancy evaluation, 26 indoor environmental quality (IEQ) indicators were explored among 1,912 students living in Purpose-Built off-campus university housing in Northern Ghana.

Findings

The study established a negative relationship between indoor environmental quality and residential mobility among student housing in Northern Ghana. Residential mobility is primarily attributed to the dissatisfaction with thermal and indoor air quality.

Practical implications

The negative relationship affects vacancy and rental cashflows for property investors. Also, understanding local environmental conditions can influence future student housing design and enhance thermal and indoor air quality.

Originality/value

The authors contribute to studies on indoor environmental quality in student housing. In addition, establishing the relationship between indoor environmental quality and residential mobility in tropical African regions is novel.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 28 September 2023

Williams Miller Appau, Elvis Attakora-Amaniampong and Iruka Chijindu Anugwo

To significantly adopt and improve indoor energy efficiency in building infrastructure in developing countries can be a challenging venture. Thus, this study aimed to assess the…

Abstract

Purpose

To significantly adopt and improve indoor energy efficiency in building infrastructure in developing countries can be a challenging venture. Thus, this study aimed to assess the satisfaction of indoor environmental quality and its effect on energy use intensity and efficient among student housing.

Design/methodology/approach

The study is quantitative and hinged on the contrast theory. A survey of 1,078 student residents living in purpose-built student housing was contacted. Using Post-Occupancy Evaluation and Multiple Linear Regression, critical variables such as thermal comfort, visual comfort and indoor air quality and 21 indicators were assessed. Data on annual energy consumption and total square metre of the indoor area were utilised to assess energy use intensity.

Findings

The study found a direct relationship between satisfaction with indoor environmental quality and energy use intensity. The study showed that students were more satisfied with thermal comfort conditions than visual and indoor air quality. Overall, these indicators contributed to 75.9% kWh/m2 minimum and 43.2% kWh/m2 maximum energy use intensity in student housing in Ghana. High occupancy and small useable space in student housing resulted in high energy use intensity.

Practical implications

Inclusions of sustainable designs and installation of smart mechanical systems are feedback to student housing designers. Again, adaptation to retrofitting ideas can facilitate energy efficiency in the current state of student housing in Ghana.

Originality/value

Earlier studies have argued for and against the satisfaction of indoor environmental quality in student housing. However, these studies have neglected to examine the impact on energy use intensity. This is novel because the assessment of energy use intensity in this study has a positive influence on active design incorporation among student housing.

Details

Property Management, vol. 42 no. 3
Type: Research Article
ISSN: 0263-7472

Keywords

Article
Publication date: 15 September 2021

Ahmed Eweda, Abobakr Al-Sakkaf, Tarek Zayed and Sabah Alkass

The purpose of this study is to develop a condition assessment (CA) model for a building's indoor 21 environments and to improve the building's asset management process.

Abstract

Purpose

The purpose of this study is to develop a condition assessment (CA) model for a building's indoor 21 environments and to improve the building's asset management process.

Design/methodology/approach

The methodology is based on dividing the building into spaces, which are the principal evaluated elements based on the building's indoor environmental quality (IEQ). An evaluation scheme was prepared for the identified factors and the analytical hierarchy process (AHP) technique was used to calculate the relative weight of each space inside the building as well as the contribution of each IEQ factors (IEQFs) in the overall environmental condition of each space inside the building. The multi-attribute utility theory (MAUT) was then applied to assess the environmental conditions of the building as a whole and its spaces. An educational building in Canada was evaluated using the developed model.

Findings

Each space type was found to have its own IEQFs weights, which confirms the hypothesis that the importance and allocation of each IEQF are dependent on the function and tasks carried out in each space. A similar indoor environmental assessment score was calculated using the developed model and the building CA conducted by the facility management team; “89%” was calculated, using K-mean clustering, for the physical and environmental conditions.

Originality/value

IEQ affects occupants' assessment of their quality of life (QOL). Despite the existence of IEQ evaluation models that correlate the building's IEQ and the occupants' perceived indoor assessments, some limitations have led to the necessity of developing a comprehensive model that integrates all factors and their sub-criteria in an assessment scheme that converts all the indoor environmental factors into objective metrics.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 16 June 2021

Chuloh Jung, Jihad Awad, Naglaa Sami Abdelaziz Mahmoud and Muna Salameh

This study aims to evaluate The Springs’ indoor environment, one of the iconic townhouse-type residential buildings in Dubai, more efficiently for the integrated evaluation of the…

Abstract

Purpose

This study aims to evaluate The Springs’ indoor environment, one of the iconic townhouse-type residential buildings in Dubai, more efficiently for the integrated evaluation of the indoor environment with the weights of indoor environmental factors such as thermal, indoor air, lighting and acoustic.

Design/methodology/approach

The weights of the indoor environment factors were derived for the integrated evaluation to reflect the residents’ preferences. Based on the post-occupancy evaluation (P.O.E.) survey, the weights according to the gender, age group and indoor spaces followed a comparison and analytical processes.

Findings

This paper had found the priority of residents’ needs for each space in The Springs project. In summer, thermal comfort was the most important factor for living room and the master bedroom. In winter, the priority for living room and kitchen was the indoor air quality.

Research limitations/implications

As it is the first research survey for housing project in Dubai, it needs to be extended to other housing projects in Dubai. To increase the reliability of the weights calculated through this study and the applicability of the integrated indoor environmental evaluation, more in-depth P.O.E. survey is needed with wide range of survey participants.

Social implications

This paper will help developing guidelines for future renovation based on the comparative analysis among thermal comfort, acoustic comfort, lighting comfort and indoor air comfort.

Originality/value

This paper is the first attempt to analyze the condition of early housing projects in Dubai. The data can be used to increase not only the design quality and marketability of housing projects in Dubai but also the condition of residents’ health status to avoid sick building syndrome from approximately 20 years old buildings.

Article
Publication date: 26 September 2008

Edwin H.W. Chan, K.S. Lam and W.S. Wong

The purpose of this paper is to evaluate the indoor environmental quality among residential buildings in dense urban living environment, after the outbreak of Severe Acute…

1630

Abstract

Purpose

The purpose of this paper is to evaluate the indoor environmental quality among residential buildings in dense urban living environment, after the outbreak of Severe Acute Respiratory Syndrome (SARS), which called for a review on the relationship between health issues and the authors' built facilities.

Design/methodology/approach

Environmental tests include thermal comfort, noise, daylight and air quality inside the residence of typical housing units were carried out. Based on inferences drawn from test results, the paper developed systematic conclusions.

Findings

It was observed that most of the occupants (over 70 per cent of 125 households) were tolerating the higher air temperature and dimmer daylight inside their residence, which was proven to fall behind Hong Kong Standard. On the contrary, people reflected that they were also trying to abate noise and dust concentration in their daily life.

Research limitations/implications

Owing to the flat occupants' exclusive property rights in law, there were limited access to the residents' flats and only 32 occupants out of 125 allowed us to conduct the survey. Yet, the data set was justified.

Practical implications

The results provides practical guidance for the design of future housing to enhance health and comfort of occupants.

Originality/value

Originality of the findings is based on on‐site data collected in dense urban housing condition. Rating data were also collected from the occupants concerned about their habituation conditions in Hong Kong after the outbreak of SARS, which was a major crisis that called for fundamental review of the authors' built facilities.

Details

Journal of Facilities Management, vol. 6 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 3 February 2023

Modupe Cecilia Mewomo, James Olaonipekun Toyin, Comfort Olubukola Iyiola and Olusola Raphael Aluko

The present shift and change in the human lifestyle across the world are undeniable. Currently, individuals spend a substantial amount of time indoors due to the global COVID-19…

2934

Abstract

Purpose

The present shift and change in the human lifestyle across the world are undeniable. Currently, individuals spend a substantial amount of time indoors due to the global COVID-19 pandemic that strikes the entire world. This change in human lifestyle has devastating effects on human health and productivity. As a result, the influence of indoor environmental quality (IEQ) on the health and productivity of building users becomes a critical field of research that requires immediate attention. As a result, the purpose of this study is to review the state-of-the-art literature by establishing a connection between the factors that influence health and productivity in any given indoor environment.

Design/methodology/approach

The methodology involves a thorough review of selected published journals from 1983 to 2021, and the result was analysed through content analysis. The search included journal articles, books and conference proceedings on the critical factors influencing IEQ and their impact on building occupants, which was sourced from different databases such as ScienceDirect, Taylor, GoogleScholar and Web of Science.

Findings

The findings from the 90 selected articles revealed four critical factors influencing the quality of the indoor environment and are categorised into; indoor air quality, indoor thermal comfort, visual comfort and acoustic comfort. The findings suggested that when developing a system for controlling the quality of the indoor environment, the indoor air quality, indoor thermal comfort, visual comfort and acoustic comfort should be taken into account.

Originality/value

The indoor environment deeply impacts the health of individuals in their living and work environments. Industry must have a moral responsibility to provide health facilities in which people and workers feel satisfies and give conditions for prosperity. Addressing these essential aspects will not only help the decision-making process of construction professionals but also encourages innovative construction techniques that will enhance the satisfaction, wellness and performance of building occupants.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 11 August 2021

Aba Essanowa Afful, Joshua Ayarkwa, Godwin Kojo Kumi Acquah and Dickson Osei-Asibey

The aim of this study was to identify these enablers in literature and subsume them under broad categories for the development of a framework showing the interrelationships among…

4140

Abstract

Purpose

The aim of this study was to identify these enablers in literature and subsume them under broad categories for the development of a framework showing the interrelationships among the enablers.

Design/methodology/approach

Fifty-four (54) relevant articles were desk reviewed from different construction peer-reviewed journals and published conference proceedings to identify 20 core enablers of incorporating indoor environmental quality (IEQ) into building designs.

Findings

The identified enablers include improved occupants' health, well-being and satisfaction, environmental conservation, high return on investments and co-operative methods of design and construction management among others. To better understand the enablers identified, they were classified into seven main interconnected categories: economic enablers, environmental enablers, occupant and end-user enablers, process enablers, corporate image, culture and vision enablers, client-related enablers and external enablers.

Research limitations/implications

The interconnectedness brought to the fore a subtler appreciation of the drivers of IEQ, which could help expand current knowledge outside the narrow scope of isolated drivers. The fact that the papers selected in this study are not limited geographically underscores the wide applicability of the findings to the global construction industry.

Practical implications

Understanding that the enablers will enhance the adoption and design of quality indoor environments, help in building the capacity of consultants to adopt the design of quality IEs and reduce the impact of construction on the environment.

Social implications

These identified enablers are not limited geographically and thus could promote the design of quality indoor environments globally, particularly in green building design. To the global construction community, this review presents a list of enablers that would expedite the adoption of principles of IEQ designs in buildings thus taking the global construction industry one more step towards sustainable built forms. Promoting the identified enablers would ultimately steer stakeholders to design and build better indoor environments.

Originality/value

The fact that the papers selected in this study are not limited geographically underscores the wide applicability of the findings to the global construction industry.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 16 March 2022

João Alexandre Paschoalin Filho, Antonio Jose Guerner Dias, João Henrique Storopoli, Andrea Ghermandi and Hendrio Chaves de Carvalho

This research aims at studying the influence of a classroom’s inner environmental conditions on undergraduate students’ performance using an experimental methodology.

280

Abstract

Purpose

This research aims at studying the influence of a classroom’s inner environmental conditions on undergraduate students’ performance using an experimental methodology.

Design/methodology/approach

The Uchida-Kraepelin test (U-K test) was applied to measure the performance of a group of 47 students in a selected classroom that was arranged according to the following experimental conditions: air-conditioning on, and doors and windows closed (D1); doors and windows open, and air-conditioning off (D2); air-conditioning off, and doors and windows closed (D3). After completing the tests, questionnaires were distributed to evaluate the students’ assessment of each set of environmental conditions.

Findings

On-site measurements of humidity and carbon dioxide levels stress the importance of ensuring good natural ventilation through open doors and windows, independently of whether the air-conditioning system is operated or not. Also, the authors find that the students’ self-assessment regarding the inner environmental conditions for each studied set was entirely accurate, with set D3 being assessed as the worst. The U-K test scores for each environmental set did not show statistically significant differences, which means that, in the studied conditions, the student’s performance in the tests was not affected by the inner environmental conditions.

Practical implications

There is a direct relationship between the building’s indoor conditions and an occupant’s health. Factors such as poor maintenance, bad indoor environmental quality (IEQ) and building age will worsen the building’s condition and negatively impact the occupant’s health. Educational buildings with poor IEQ can reduce the concentration and performance of occupants.

Social implications

School is an important place to help students grow in their various capabilities. They spend approximately 30% of their daily lives in schools for their educational activities. Since most of their activities are performed indoors, indoor environmental attributes, such as light, heat, air and sound, should be maintained as required. In general, schools are not thermally comfortable. The extreme thermal environment of classrooms affects students’ concentration. Thermal discomfort may also cause irritation. In addition to reduced concentration, such an environment could also cause tiredness, sluggishness and health problem.

Originality/value

Despite the importance of the issue, scientific investigations of the correlations between students’ performance and the quality of scholar buildings’ inner environmental conditions are still relatively recent. In this context, this research further explores the effect of a classroom’s different environmental inner conditions on the performance of undergraduate students at a university in São Paulo/Brazil.

Details

Archnet-IJAR: International Journal of Architectural Research, vol. 16 no. 2
Type: Research Article
ISSN: 2631-6862

Keywords

Abstract

Details

Advances in Librarianship
Type: Book
ISBN: 978-0-12024-618-2

1 – 10 of over 3000