Search results

1 – 10 of 534
Article
Publication date: 1 April 2021

Nusrat Jahan Imu, Anayo Ezeamama and Saheed Matemilola

Decentralized solar systems are increasingly being used as alternative source of off-grid electrification in Bangladesh. They offer solutions to provide (clean) electricity to the…

Abstract

Purpose

Decentralized solar systems are increasingly being used as alternative source of off-grid electrification in Bangladesh. They offer solutions to provide (clean) electricity to the low-income households that are not currently served by the national grid. The standards of solar systems need to be improved to maximize the benefits they offer for off-grid electrification.

Design/methodology/approach

A quantitative research approach was used to explore the power output performance of six solar systems samples. In order to realize a proper load management, daily power production was measured to determine the generation capacity of 50, 60 and 100 Wp monocrystalline and polycrystalline modules when average solar irradiation was 916 W/m2. In the testing system, the irradiation was measured by panel analyzer HT instrument I-V 400. The load arrangement comprised of different kinds of appliances (fan, light, TV). The daily consumption of energy by these loads was calculated using daily operational hours to determine system power performance.

Findings

The authors found that monocrystalline system performs better than polycrystalline by 0.39 kilowatt-hour (kWh) with capacity of 100 watt-peak (Wp) modules. The carbon dioxide (CO2) emissions reduction potential of our sample solar systems were also estimated by assuming a scenario. This was derived by using the electricity emission factor for natural gas (CH4), since CH4 is the main source of energy for power generation in Bangladesh. Savings in CO2 of 0.52 kgCO2/kWh is possible with the adoption of a 100 Wp monocrystalline module.

Practical implications

Government actions that promote the use of monocrystalline module will enhance the benefits of the use of solar systems in providing quality and sustainable electricity. This will contribute to government's efforts towards achieving some of the United Nations (UN) sustainable development goals (SDG) and resilience of the most vulnerable population to the effects and impacts of climate change.

Originality/value

Almost all solar modules found in off-grid areas are polycrystalline whose energy generation capacity is much lower compared to monocrystalline types. But use of low efficient polycrystalline solar module hindered the development of country's solar sector and option to save carbon emission. The use of highly efficient monocrystalline solar module will save also the country's land as the country has land scarcity challenges for establishing large-scale solar power plant. The authors also recommend actions that can be implemented at the national level to improve the attractiveness of monocrystalline solar systems in Bangladesh.

Details

International Journal of Building Pathology and Adaptation, vol. 40 no. 4
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 21 March 2023

Rajat Kumar, Mahesh Kumar Gupta, Santosh Kumar Rai and Vinay Panwar

The changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a…

Abstract

Purpose

The changes in tensile behavior of polycrystalline nanocopper lattice with changes in temperature, average grain size (AGS) and strain rate, have been explored. The existence of a critical AGS has also been observed which shows that the Hall–Petch relationship behaves inversely.

Design/methodology/approach

Nanoscale deformation of polycrystalline nanocopper has been done in this study with the help of an embedded atom method (EAM) potential. Voronoi construction method has been employed for creating four polycrystals of nanocopper with different sizes. Statistical analysis has been used to examine the observations with emphasis on the polycrystal size effect on melting point temperature.

Findings

The study has found that the key stress values (i.e. elastic modulus, yield stress and ultimate tensile stress) are significantly influenced by the considered parameters. The increase in strain rate is observed to have an increasing impact on mechanical properties, whereas the increase in temperature degrades the mechanical properties. In-depth analysis of the deformation mechanism has been studied to deliver real-time visualization of grain boundary motion.

Originality/value

This study provides the relationship between required grain size variations for consecutive possible variations in mechanical properties and may help to reduce the trial processes in the synthesis of polycrystalline copper based on different temperatures and strain rates.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 26 April 2022

Angela Najdoska and Goga Vladimir Cvetkovski

The purpose of this paper is to present a novel approach to the determination of the maximum power point (MPP) in the photovoltaic system using genetic algorithm (GA). The…

71

Abstract

Purpose

The purpose of this paper is to present a novel approach to the determination of the maximum power point (MPP) in the photovoltaic system using genetic algorithm (GA). The optimization is realised on two types of photovoltaic (PV) modules: monocrystalline and polycrystalline solar modules, with the same rated peak power (400 Wp) but different electrical output data.

Design/methodology/approach

The proposed algorithm is a nature-based algorithm that uses genetic operators such as reproduction, crossover and mutation to realise the search through the investigated area of solutions. To determine the MPP of the PV modules, a two-diode model of a PV cell is used. Based on the input electrical data for the analysed PV module, as well as the mathematical model of the PV, the algorithm can estimate the current and voltage at the MPP for given solar irradiation and cell temperature. The analysis is made for several different irradiations, but in work, the results are presented for irradiations of: 100, 500 and 1,000 W/m2 and cell temperatures of 0, 25 and 40 °C.

Findings

From the presented results and performed analysis, it can be concluded that GA gives adequate results for both modules and for all working conditions. From the obtained results, it can be concluded that the optimization algorithm performs better when applied to the monocrystalline module works better especially in conditions with larger cell temperature, in comparison with the performance of the optimization algorithm applied to the polycrystalline module. On the other hand, the optimization algorithm applied to the polycrystalline module works better for the other working scenarios with smaller cell temperatures.

Practical implications

From the performed analysis, it can be concluded that the use GA as an optimization tool for the determination of the MPP can be successfully implemented. In addition, to improve the overall performance of the PV system, it is also necessary to forecast the weather conditions of the location where the PV system would be installed to forecast the cell temperature and the solar irradiation. This is necessary to choose the right PV module and inverter for the given location.

Originality/value

An optimization technique using GA as an optimization tool has been developed and successfully applied in the determination of the MPP for a PV system. The results are compared with the analytically determined values as well as with the values given by the producer, and they show good agreement.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 April 1993

G.V. Gadiyak, J.L. Korobitsina and V.I. Kramarenko

The model of the thermal oxidation of polycrystalline silicon is described. It includes parabolic equation system for the diffusion process of oxidant in polycrystalline oxide…

Abstract

The model of the thermal oxidation of polycrystalline silicon is described. It includes parabolic equation system for the diffusion process of oxidant in polycrystalline oxide, equations system for the deformation of oxide and nitride mask. The numerical calculations of the reverse L‐shape sealed polybuffer LOCOS are presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 12 no. 4
Type: Research Article
ISSN: 0332-1649

Open Access
Article
Publication date: 2 November 2023

Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost and Bai-Xiang Xu

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a…

Abstract

Purpose

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures.

Design/methodology/approach

The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization.

Findings

The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains.

Research limitations/implications

The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined.

Originality/value

This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Content available
Article
Publication date: 23 September 2021

Jianing Wang, Jieshi Chen, Zhiyuan Zhang, Peilei Zhang, Zhishui Yu and Shuye Zhang

The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as…

Abstract

Purpose

The purpose of this article is the effect of doping minor Ni on the microstructure evolution of a Sn-xNi (x = 0, 0.05 and 0.1 wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment. Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of interfacial layer was different due to the different mechanism of element diffusion of the two substrates. The PC Ni substrate mainly provided Ni atoms through grain boundary diffusion. The Ni3Sn4 phase of the Sn0.05Ni/PC Ni joint was finer, and the diffusion flux of Sn and Ni elements increased, so the Ni3Sn4 layer of this joint was the thickest. The SC Ni substrate mainly provided Ni atoms through the lattice diffusion. The Sn0.1Ni/SC Ni joint increases the number of Ni atoms at the interface due to the doping of 0.1Ni (wt.%) elements, so the joint had the thickest NiSn4 layer.

Design/methodology/approach

The effects of doping minor Ni on the microstructure evolution of an Sn-xNi (x = 0, 0.05 and 0.1 Wt.%)/Ni (Poly-crystal/Single-crystal abbreviated as PC Ni/SC Ni) solder joint during reflow and aging treatment was investigated in this study.

Findings

Results showed that the intermetallic compounds (IMCs) of the interfacial layer of Sn-xNi/PC Ni joints were Ni3Sn4 phase, while the IMCs of Sn-xNi/SC Ni joints were NiSn4 phase. After the reflow process and thermal aging of different joints, the growth behavior of the interfacial layer was different due to the different mechanisms of element diffusion of the two substrates.

Originality/value

In this study, the effect of doping Ni on the growth and formation mechanism of IMCs of the Sn-xNi/Ni (single-crystal) solder joints (x = 0, 0.05 and 0.1 Wt.%) was investigated.

Details

Soldering & Surface Mount Technology, vol. 34 no. 2
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 12 December 2022

Weicheng Guo, Chongjun Wu, Xiankai Meng, Chao Luo and Zhijian Lin

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various…

Abstract

Purpose

Molecular dynamics is an emerging simulation technique in the field of machining in recent years. Many researchers have tried to simulate different processing methods of various materials with the theory of molecular dynamics (MD), and some preliminary conclusions have been obtained. However, the application of MD simulation is more limited compared with traditional finite element model (FEM) simulation technique due to the complex modeling approach and long computation time. Therefore, more studies on the MD simulations are required to provide a reliable theoretical basis for the nanoscale interpretation of grinding process. This study investigates the crystal structures, dislocations, force, temperature and subsurface damage (SSD) in the grinding of iron-nickel alloy using MD analysis.

Design/methodology/approach

In this study the simulation model is established on the basis of the workpiece and single cubic boron nitride (CBN) grit with embedded atom method and Morse potentials describing the forces and energies between different atoms. The effects of grinding parameters on the material microstructure are studied based on the simulation results.

Findings

When CBN grit goes through one of the grains, the arrangement of atoms within the grain will be disordered, but other grains will not be easily deformed due to the protection of the grain boundaries. Higher grinding speed and larger cutting depth can cause greater impact of grit on the atoms, and more body-centered cubic (BCC) structures will be destroyed. The dislocations will appear in grain boundaries due to the rearrangement of atoms in grinding. The increase of grinding speed results in the more transformation from BCC to amorphous structures.

Originality/value

This study is aimed to study the grinding of Fe-Ni alloy (maraging steel) with single grit through MD simulation method, and to reveal the microstructure evolution within the affected range of SSD layer in the workpiece. The simulation model of polycrystalline structure of Fe-Ni maraging steel and grinding process of single CBN grit is constructed based on the Voronoi algorithm. The atomic accumulation, transformation of crystal structures, evolution of dislocations as well as the generation of SSD are discussed according to the simulation results.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 25 January 2011

L.S. Chuah, Z. Hassan, S.S. Tneh and S.G. Teo

The purpose of this paper is to demonstrate the n‐ZnO/p‐Si Schottky photodiodes.

Abstract

Purpose

The purpose of this paper is to demonstrate the n‐ZnO/p‐Si Schottky photodiodes.

Design/methodology/approach

A Zn film was deposited on silicon substrate by dc sputtering deposition technology from high purity zinc (Zn) targets. Then, the Zn films were then annealed under flowing oxygen (O2) gas environment in the furnace. ZnO nanorods morphologies have been successfully prepared through a simple method. No catalyst is required.

Findings

The structures and morphologies of the products were characterized in detail by using X‐ray diffraction, energy dispersive X‐ray, and scanning electron microscopy (SEM). According to experimental results, the current‐voltage characteristics of the device show the typical rectifying behaviour of Schottky diodes. The UV photocurrent measurement was performed using an UV lamp under a reverse bias.

Originality/value

The paper demonstrates that the n‐ZnO/p‐Si diodes exhibit strong rectifying conduct described by the current‐voltage (I‐V) measurement under a dark and illumination conditions.

Details

Microelectronics International, vol. 28 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 April 1991

SK Jones and A Gérodolle

A new model to describe dopant diffusion and recrystallisation in polycrystalline silicon during thermal treatment is presented. The full 3D microstructure of the material is…

Abstract

A new model to describe dopant diffusion and recrystallisation in polycrystalline silicon during thermal treatment is presented. The full 3D microstructure of the material is considered and a local homogenisation approximation introduced. A parallel diffusion model for diffusion in grain boundaries and grain interior with grain growth and segregation is developed within this approximation. The model is solved in a 2D vertical section using a finite element discretisation. An example of the application of this model to a one micron bipolar transistor is given.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 10 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 March 2005

Jingzhe Pan and H.N. Ch’ng

This paper presents a unified framework to model the sintering process of fine powders. The framework is based on classical virtual power principle and its corresponding…

Abstract

This paper presents a unified framework to model the sintering process of fine powders. The framework is based on classical virtual power principle and its corresponding variational principle. Firstly, the classical models of solid state, viscous and liquid phase sintering are reproduced assuming single matter re‐distribution mechanism and using the virtual power principle as the starting point. Then we demonstrate how to obtain the governing equations for microstructural evolution using the variational principle. These provide a common thread through the existing sintering models. Finally a numerical solution scheme is briefly outlined for computer simulation of microstructural evolution using the variational principle as the starting point. The computer simulation can follow the entire sintering process from powder compact to fully dense solid and deal with fully couple multi‐physics processes involving all the possible underlying matter re‐distribution mechanisms. Several examples are provided to demonstrate the deep insights that can be gained into the sintering process by using the numerical tool.

Details

Multidiscipline Modeling in Materials and Structures, vol. 1 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 534