Search results

1 – 10 of over 27000
Article
Publication date: 5 February 2018

Fuli Zhou, Xu Wang and Avinash Samvedi

Driven by motivation of quality enhancement and brand reputation promotion, automotive industries try to improve product quality and customer satisfaction by performing quality…

Abstract

Purpose

Driven by motivation of quality enhancement and brand reputation promotion, automotive industries try to improve product quality and customer satisfaction by performing quality pilot programs continuously. The purpose of this paper is to develop a dynamic model to select the improvement quality pilot program from competitive candidates based on dynamic customers’ feedback.

Design/methodology/approach

An extended dynamic multi-criteria decision-making method is developed by embedding dynamic triangular fuzzy weighting average operators into fuzzy VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method, and the novel evaluation indicator “ζ” is introduced to reflect prioritization performance.

Findings

The two evaluation indicators (Q and “ζ” ) assist quality managers to identify the best program with respect to multiple conflicting criteria and the best choice based on these two indexes shows high conformity. Besides, ranking sequences obtained by “ζ” can avoid the dilemma that there are several candidates with top priority calculated by comprehensive group utility value Q.

Practical implications

The dynamic MCDM method has been applied into the quality improvement procedure in Chinese domestic auto factories and contributes to highly efficient promotion.

Originality/value

Few dynamic models on pilot program selection for quality improvement based on dynamic customers’ feedback, this study deals with the dynamic promotion by an extended fuzzy VIKOR method and presents a case application.

Article
Publication date: 16 April 2018

Qi Zhou, Xinyu Shao, Ping Jiang, Tingli Xie, Jiexiang Hu, Leshi Shu, Longchao Cao and Zhongmei Gao

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly…

Abstract

Purpose

Engineering system design and optimization problems are usually multi-objective and constrained and have uncertainties in the inputs. These uncertainties might significantly degrade the overall performance of engineering systems and change the feasibility of the obtained solutions. This paper aims to propose a multi-objective robust optimization approach based on Kriging metamodel (K-MORO) to obtain the robust Pareto set under the interval uncertainty.

Design/methodology/approach

In K-MORO, the nested optimization structure is reduced into a single loop optimization structure to ease the computational burden. Considering the interpolation uncertainty from the Kriging metamodel may affect the robustness of the Pareto optima, an objective switching and sequential updating strategy is introduced in K-MORO to determine (1) whether the robust analysis or the Kriging metamodel should be used to evaluate the robustness of design alternatives, and (2) which design alternatives are selected to improve the prediction accuracy of the Kriging metamodel during the robust optimization process.

Findings

Five numerical and engineering cases are used to demonstrate the applicability of the proposed approach. The results illustrate that K-MORO is able to obtain robust Pareto frontier, while significantly reducing computational cost.

Practical implications

The proposed approach exhibits great capability for practical engineering design optimization problems that are multi-objective and constrained and have uncertainties.

Originality/value

A K-MORO approach is proposed, which can obtain the robust Pareto set under the interval uncertainty and ease the computational burden of the robust optimization process.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 March 2021

Fei Zhao, Xueyao Zheng, Shichen Zhou, Bo Zhou and Shifeng Xue

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Abstract

Purpose

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Design/methodology/approach

According to the Hamilton's principle, the equilibrium equations and boundary conditions of the model are established and according to the modified couple stress theory, the model is available to capturing the size effect because of the material length scale parameter. Based on the model, the simply supported beam was taken for example to be solved and simulated.

Findings

Results show that the size effect of SMP micro-beam is more obvious when the dimensionless beam height is similar or the larger of the value of loading time. The rigidity and strength of the SMP beam decrease with the increasing of the dimensionless beam height or the loading time. The viscous property of SMP micro-beam plays a more important role with the larger dimensionless beam height. And the smaller the dimensionless beam height is, the more obvious the shape memory effect of the SMP micro-beam is.

Originality/value

This work implies prediction of size-dependent thermo-mechanical behaviors of the SMP micro-beam and will provide a theoretical basis for design SMP microstructures in the field of micro/nanomechanics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 April 2017

Qi Zhou, Ping Jiang, Xinyu Shao, Hui Zhou and Jiexiang Hu

Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval…

Abstract

Purpose

Uncertainty is inevitable in real-world engineering optimization. With an outer-inner optimization structure, most previous robust optimization (RO) approaches under interval uncertainty can become computationally intractable because the inner level must perform robust evaluation for each design alternative delivered from the outer level. This paper aims to propose an on-line Kriging metamodel-assisted variable adjustment robust optimization (OLK-VARO) to ease the computational burden of previous VARO approach.

Design/methodology/approach

In OLK-VARO, Kriging metamodels are constructed for replacing robust evaluations of the design alternative delivered from the outer level, reducing the nested optimization structure of previous VARO approach into a single loop optimization structure. An on-line updating mechanism is introduced in OLK-VARO to exploit the obtained data from previous iterations.

Findings

One nonlinear numerical example and two engineering cases have been used to demonstrate the applicability and efficiency of the proposed OLK-VARO approach. Results illustrate that OLK-VARO is able to obtain comparable robust optimums as to that obtained by previous VARO, while at the same time significantly reducing computational cost.

Practical implications

The proposed approach exhibits great capability for practical engineering design optimization problems under interval uncertainty.

Originality/value

The main contribution of this paper lies in the following: an OLK-VARO approach under interval uncertainty is proposed, which can significantly ease the computational burden of previous VARO approach.

Details

Engineering Computations, vol. 34 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 13 August 2018

Robert L. Dipboye

Abstract

Details

The Emerald Review of Industrial and Organizational Psychology
Type: Book
ISBN: 978-1-78743-786-9

Article
Publication date: 4 April 2022

Lina Syazwana Kamaruzzaman and Yingxin Goh

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties…

Abstract

Purpose

This paper aims to review recent reports on mechanical properties of Sn-Bi and Sn-Bi-X solders (where X is an additional alloying element), in terms of the tensile properties, hardness and shear strength. Then, the effects of alloying in Sn-Bi solder are compared in terms of the discussed mechanical properties. The fracture morphologies of tensile shear tested solders are also reviewed to correlate the microstructural changes with mechanical properties of Sn-Bi-X solder alloys.

Design/methodology/approach

A brief introduction on Sn-Bi solder and reasons to enhance the mechanical properties of Sn-Bi solder. The latest reports on Sn-Bi and Sn-Bi-X solders are combined in the form of tables and figures for each section. The presented data are discussed by comparing the testing method, technical setup, specimen dimension and alloying element weight percentage, which affect the mechanical properties of Sn-Bi solder.

Findings

The addition of alloying elements could enhance the tensile properties, hardness and/or shear strength of Sn-Bi solder for low-temperature solder application. Different weight percentage alloying elements affect differently on Sn-Bi solder mechanical properties.

Originality/value

This paper provides a compilation of latest report on tensile properties, hardness, shear strength and deformation of Sn-Bi and Sn-Bi-X solders and the latest trends and in-depth understanding of the effect of alloying elements in Sn-Bi solder mechanical properties.

Details

Soldering & Surface Mount Technology, vol. 34 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 13 December 2022

Zhenhua Luo, Juntao Guo, Jianqiang Han and Yuhong Wang

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in…

Abstract

Purpose

Prefabricated technology is gradually being applied to the construction of subway stations due to its characteristic of mechanization. However, the prefabricated subway station in China is in the initial stage of development, which is prone to construction safety issues. This study aims to evaluate the construction safety risks of prefabricated subway stations in China and formulate corresponding countermeasures to ensure construction safety.

Design/methodology/approach

A construction safety risk evaluation index system for the prefabricated subway station was established through literature research and the Delphi method. Furthermore, based on the structure entropy weight method, matter-element theory and evidence theory, a hybrid evaluation model is developed to evaluate the construction safety risks of prefabricated subway stations. The basic probability assignment (BPA) function is obtained using the matter-element theory, the index weight is calculated using the structure entropy weight method to modify the BPA function and the risk evaluation level is determined using the evidence theory. Finally, the reliability and applicability of the evaluation model are verified with a case study of a prefabricated subway station project in China.

Findings

The results indicate that the level of construction safety risks in the prefabricated subway station project is relatively low. Man risk, machine risk and method risk are the key factors affecting the overall risk of the project. The evaluation results of the first-level indexes are discussed, and targeted countermeasures are proposed. Therefore, management personnel can deeply understand the construction safety risks of prefabricated subway stations.

Originality/value

This research fills the research gap in the field of construction safety risk assessment of prefabricated subway stations. The methods for construction safety risk assessment are summarized to establish a reliable hybrid evaluation model, laying the foundation for future research. Moreover, the construction safety risk evaluation index system for prefabricated subway stations is proposed, which can be adopted to guide construction safety management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 31 May 2024

Zirui Zeng, Junwen Xu, Shiwei Zhou, Yufeng Zhao and Yansong Shi

To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of…

Abstract

Purpose

To achieve sustainable development in shipping, accurately identifying the impact of artificial intelligence on shipping carbon emissions and predicting these emissions is of utmost importance.

Design/methodology/approach

A multivariable discrete grey prediction model (WFTDGM) based on weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed to validate the effectiveness of our new model and chosen algorithm.

Findings

To demonstrate the applicability and robustness of the new model in predicting marine shipping carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM (1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has not achieved the desired inhibitory impact.

Practical implications

This research not only deepens understanding of the mechanisms through which artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing effective emission reduction strategies in the shipping industry, thereby contributing significantly to green shipping and global carbon reduction efforts.

Originality/value

The multi-variable discrete grey prediction model developed in this paper effectively mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this paper, a grey prediction model with even higher predictive performance can be constructed by integrating it with other algorithms.

Details

Marine Economics and Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2516-158X

Keywords

Article
Publication date: 27 June 2020

Fuli Zhou, Panpan Ma, Yandong He, Saurabh Pratap, Peng Yu and Biyu Yang

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually…

Abstract

Purpose

With an increasingly fierce competition of the shipbuilding industry, advanced technologies and excellent management philosophies in the manufacturing industry are gradually introduced to domestic shipyards. The purpose of this study is to promote the lean management of Chinese ship outfitting plants by lean production strategy.

Design/methodology/approach

To promote the lean implementation of Chinese shipyards, the lean practice of ship-pipe part production is highlighted by lot-sizing optimization and strategic CONWIP (constant work-in-process) control. A nonlinear programming model is formulated to minimize the total cost of ship-pipe part manufacturing and the particle swarm optimization (PSO)-based algorithm is designed to resolve the established model. Besides, the pull-from-the-bottleneck (PFB) strategy is used to control ship-pipe part production, verified by Simulink simulation.

Findings

Results show that the proposed lean strategy of the programming model and strategic PFB control could assist Chinese ship outfitting plants to leverage competitive advantage by waste reduction and lean achievement. Specifically, the PFB double-loop control strategy shows better performance when there is high productivity and the PFB single-loop control outperforms at lower productivity scenarios.

Practical implications

To verify the effectiveness of the proposed lean strategy, a case study is performed to validate the formulated model. Also, simulation experiments realized by FlexSim software are conducted to testify results obtained by the constructed programming model.

Originality/value

Lean production management practice of the shipyard building industry is performed by the proposed lean production strategy through lot-sizing optimization and strategic PFB control in terms of ship-pipe part manufacturing.

Details

Kybernetes, vol. 50 no. 5
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 6 November 2017

Leshi Shu, Ping Jiang, Li Wan, Qi Zhou, Xinyu Shao and Yahui Zhang

Metamodels are widely used to replace simulation models in engineering design optimization to reduce the computational cost. The purpose of this paper is to develop a novel…

Abstract

Purpose

Metamodels are widely used to replace simulation models in engineering design optimization to reduce the computational cost. The purpose of this paper is to develop a novel sequential sampling strategy (weighted accumulative error sampling, WAES) to obtain accurate metamodels and apply it to improve the quality of global optimization.

Design/methodology/approach

A sequential single objective formulation is constructed to adaptively select new sample points. In this formulation, the optimization objective is to select a sample point with the maximum weighted accumulative predicted error obtained by analyzing data from previous iterations, and a space-filling criterion is introduced and treated as a constraint to avoid generating clustered sample points. Based on the proposed sequential sampling strategy, a two-step global optimization approach is developed.

Findings

The proposed WAES approach and the global optimization approach are tested in several cases. A comparison has been made between the proposed approach and other existing approaches. Results illustrate that WAES approach performs the best in improving metamodel accuracy and the two-step global optimization approach has a great ability to avoid local optimum.

Originality/value

The proposed WAES approach overcomes the shortcomings of some existing approaches. Besides, the two-step global optimization approach can be used for improving the optimization results.

Details

Engineering Computations, vol. 34 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 27000