Search results

1 – 10 of 545
Article
Publication date: 13 November 2018

Xuchun Ren and Sharif Rahman

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design…

Abstract

Purpose

This paper aims to present a new method, named as augmented polynomial dimensional decomposition (PDD) method, for robust design optimization (RDO) and reliability-based design optimization (RBDO) subject to mixed design variables comprising both distributional and structural design variables.

Design/methodology/approach

The method involves a new augmented PDD of a high-dimensional stochastic response for statistical moments and reliability analyses; an integration of the augmented PDD, score functions, and finite-difference approximation for calculating the sensitivities of the first two moments and the failure probability with respect to distributional and structural design variables; and standard gradient-based optimization algorithms.

Findings

New closed-form formulae are presented for the design sensitivities of moments that are simultaneously determined along with the moments. A finite-difference approximation integrated with the embedded Monte Carlo simulation of the augmented PDD is put forward for design sensitivities of the failure probability.

Originality/value

In conjunction with the multi-point, single-step design process, the new method provides an efficient means to solve a general stochastic design problem entailing mixed design variables with a large design space. Numerical results, including a three-hole bracket design, indicate that the proposed methods provide accurate and computationally efficient sensitivity estimates and optimal solutions for RDO and RBDO problems.

Book part
Publication date: 10 September 2018

Pervez N. Ghauri and Ulf Elg

Several studies have proposed that small- and medium-sized enterprises (SMEs) lack resources and experiential knowledge to internationalise to distant markets. The authors argue…

Abstract

Several studies have proposed that small- and medium-sized enterprises (SMEs) lack resources and experiential knowledge to internationalise to distant markets. The authors argue that SMEs can handle the lack of these tangible and intangible internal resources through external collaborations; they can achieve success in international markets by collaborating with business partners. The role of inter-firm marketing collaboration and its impact on internationalisation efforts has not been thoroughly studied, particularly in the context of SMEs. This study will thus advance our understanding of SMEs’ inter-firm marketing collaborations and how they influence performance in international markets. In this chapter, authors conceptually develop this line of arguments through an extensive literature review and develop some hypotheses and a framework that can be empirically tested. The authors believe this framework will serve as a starting point for further studies on this topic. Theoretically, we endeavour to contribute by showing that firms can enhance their level of international performance through inter-firm collaboration. The authors believe this type of study would have considerable theoretical as well as managerial implications in this important field of research.

Details

Key Success Factors of SME Internationalisation: A Cross-Country Perspective
Type: Book
ISBN: 978-1-78754-277-8

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2020

Alankrita Singh, Balaji Chakravarthy and BVSSS Prasad

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate…

Abstract

Purpose

Numerical simulations are performed to determine the heat transfer characteristics of slot jet impingement of air on a concave surface. The purpose of this paper is to investigate the effect of protrusions on the heat transfer by placing semi-circular protrusions on the concave surface at several positions. After identifying appropriate locations where the heat transfer is a maximum, multiple protrusions are placed at desired locations on the plate. The gap ratio, curvature ratio (d/D) and the dimensions of the plate are varied so as to obtain heat transfer data. The curvature ratio is varied first, keeping the concave diameter (D) fixed followed by a fixed slot width (d). A surrogate model based on an artificial neural network is developed to determine optimum locations of the protrusions that maximize the heat transfer from the concave surface.

Design/methodology/approach

The scope and objectives of the present study are two-dimensional numerical simulations of the problem by considering all the geometrical parameters (H/d, dp, Re, θ) affecting heat transfer characteristics with the help of networking tool and numerical simulation. Development of a surrogate forward model with artificial neural networks (ANNs) with a view to explore the full parametric space. To quantitatively ascertain if protrusions hurt or help heat transfer for an impinging jet on a concave surface. Determination of the location of protrusions where higher heat transfer could be achieved by using exhaustive search with the surrogate model to replace the time consuming forward model.

Findings

A single protrusion has nearly no effect on the heat transfer. For a fixed diameter of concave surface, a smaller jet possesses high turbulence kinetic energy with greater heat transfer. ANN is a powerful tool to not only predict impingement heat transfer characteristics by considering multiple parameters but also to determine the optimum configuration from many thousands of candidate solutions. A maximum increase of 8 per cent in the heat transfer is obtained by the best configuration constituting of multiple protrusions, with respect to the baseline smooth configuration. Even this can be considered as marginal and so it can be concluded that first cut results for heat transfer for an impinging jet on a concave surface with protrusions can be obtained by geometrically modeling a much simpler plain concave surface without any significant loss of accuracy.

Originality/value

The heat transfer during impingement cooling depends on various geometrical parameters but, not all the pertinent parameters have been varied comprehensively in previous studies. It is known that a rough surface may improve or degrade the amount of heat transfer depending on their geometrical dimensions of the target and the rough geometry and the flow conditions. Furthermore, to the best of authors’ knowledge, scarce studies are available with inclusion of protrusions over a concave surface. The present study is devoted to development of a surrogate forward model with ANNs with a view to explore the full parametric space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 2009

M.H Hojjati and A. Sadighi

In a conventional finite element analysis, material properties, dimensions and applied loads are usually defined as deterministic quantities. This simplifying assumption however…

Abstract

In a conventional finite element analysis, material properties, dimensions and applied loads are usually defined as deterministic quantities. This simplifying assumption however, is not true in practical applications. Using statistics in engineering problems enables us to consider the effects of the input variables dispersion on the output parameters in an analysis. This provides a powerful tool for better decision making for more reliable design. In this paper, a probabilistic based design is presented which evaluates the sensitivity of a mechanical model to random input variables. To illustrate the effectiveness of this method, a simple bracket is analyzed for stress‐strain behavior using commercially available finite element software. Young’s modulus, applied pressure and dimensions are considered as random variables with Gaussian distribution and their effects on maximum stress and displacement is evaluated. The finite element results are compared with reliability based theoretical results which show very good agreement. This demonstrates the capability of commercially available software to handle probabilistic approach design.

Details

Multidiscipline Modeling in Materials and Structures, vol. 5 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 20 September 2018

Mikhail A. Sheremet, Ioan Pop and Alin V. Rosca

The purpose of this study is a numerical analysis of transient natural convection in an inclined square cavity filled with an alumina-water nanofluid under the effects of…

Abstract

Purpose

The purpose of this study is a numerical analysis of transient natural convection in an inclined square cavity filled with an alumina-water nanofluid under the effects of sinusoidal wall temperature and thermal radiation by using a single-phase nanofluid model with empirical correlations for effective viscosity and thermal conductivity.

Design/methodology/approach

The domain of interest includes the nanofluid-filled cavity with a sinusoidal temperature distribution along the left vertical wall. Horizontal walls are supposed to be adiabatic, while right vertical wall is kept at constant low temperature. Temperature of left wall varies sinusoidally along y-coordinate. It is assumed in the analysis that the thermophysical properties of the fluid are independent of temperature and the flow is laminar. The governing equations have been discretized using the finite difference method with the uniform grid. Simulations have been carried out for different values of the Rayleigh number, cavity inclination angle, nanoparticles volume fraction and radiation parameter.

Findings

It has been found that a growth of radiation parameter leads to the heat transfer enhancement and convective flow intensification. At the same time, an inclusion of nanoparticles illustrates a reduction in the average Nusselt number and fluid flow rate.

Originality/value

The originality of this work is to analyze unsteady natural convection in a square cavity filled with a water-based nanofluid in the presence of a sinusoidal temperature distribution along one wall. The results would benefit scientists and engineers to become familiar with the analysis of convective heat and mass transfer in nanofluids and the way to predict the properties of nanofluid convective flow in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2018

Guangming Fu, Chen An and Jian Su

The purpose of this study is to propose the generalised integral transform technique to investigate the natural convection behaviour in a vertical cylinder under different…

Abstract

Purpose

The purpose of this study is to propose the generalised integral transform technique to investigate the natural convection behaviour in a vertical cylinder under different boundary conditions, adiabatic and isothermal walls and various aspect ratios.

Design/methodology/approach

GITT was used to investigate the steady-state natural convection behaviour in a vertical cylinder with internal uniformed heat generation. The governing equations of natural convection were transferred to a set of ordinary differential equations by using the GITT methodology. The coefficients of the ODEs were determined by the integration of the eigenfunction of the auxiliary eigenvalue problems in the present natural convection problem. The ordinary differential equations were solved numerically by using the DBVPFD subroutine from the IMSL numerical library. The convergence was achieved reasonably by using low truncation orders.

Findings

GITT is a powerful computational tool to explain the convection phenomena in the cylindrical cavity. The convergence analysis shows that the hybrid analytical–numerical technique (GITT) has a good convergence performance in relatively low truncation orders in the stream-function and temperature fields. The effect of the Rayleigh number and aspect ratio on the natural convection behaviour under adiabatic and isothermal boundary conditions has been discussed in detail.

Originality/value

The present hybrid analytical–numerical methodology can be extended to solve various convection problems with more involved nonlinearities. It exhibits potential application to solve the convection problem in the nuclear, oil and gas industries.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Fariborz Karimi Talkhoncheh, Hongtao Xu, Zhiyun Wang, Mo Yang and Yuwen Zhang

– Unsteady simulation of forced convection of two heated horizontal cylinders confined in a 2D squared enclosure. The paper aims to discuss this issue.

Abstract

Purpose

Unsteady simulation of forced convection of two heated horizontal cylinders confined in a 2D squared enclosure. The paper aims to discuss this issue.

Design/methodology/approach

The finite-volume method is used to solve the transient heat transfer problem by employing quadrilateral mesh type. To solve the governing equations (conservations of mass, momentum and energy) on unstructured control volumes, a second-order quadratic upwind interpolation of convective kinematics scheme for the convection terms and the semi-implicit method for pressure-linked equations pressure correction algorithm were used.

Findings

The results indicate that the variation of the area-averaged Nusselt number strongly depends on the Reynolds number. On the contrary, the effect of cylinders’ space on heat transfer was found to be nearly negligible for Re < 460. It is also observed that steady state flow and heat transfer shift to periodical oscillation, and ultimately chaotic oscillation in non-dimensional cylinders distance of 0.1; however the sequence of appearing this route is completely different for higher cylinder spaces.

Research limitations/implications

Reynolds numbers between 380 and 550 and dimensionless horizontal distances of cylinders 0.1, 0.2 and 0.3.

Originality/value

Comprehensive knowledge of the effect of tube arrays flow regime on each other and in turn, heat transfer among them. Better understanding of convective heat transfer around an array of horizontal cylinders compared with from those around a single cylinder because of the mutual interaction of the buoyant plumes generated by the cylinders. Time-dependent phenomena of the problem including periodical oscillation or chaotic features.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 August 2022

Zahra Sadat Saneian, Seyed Mohammad Tabataba'i-Nasab, Saeid Saeida Ardakani and Masood Khodadadi

Values are both an effective variable and a powerful stimulus for consumer behavior. Values are different concepts and classifications influenced by factors such as culture and…

Abstract

Purpose

Values are both an effective variable and a powerful stimulus for consumer behavior. Values are different concepts and classifications influenced by factors such as culture and religion in different societies. This paper aims to identify the classification of values in an Islamic country’s context, Iran.

Design/methodology/approach

Iranian dominant values were identified through qualitative analysis and in-depth interviews with 77 interviewees. Grounded theory was used to identify theoretical categories that are derived from the interview data through the use of the constant comparative method.

Findings

The findings revealed three categories of hedonic, utilitarian and Islamic spiritual values, which include 10 types of values. The third value (Islamic spiritual) was identified and defined according to the Iranian Islamic religion and ideology. Interviewees expressed their values, attitudes and behaviors within the framework of their unique value system.

Originality/value

To the best of the authors’ knowledge, this paper is one of the first articles that pay special attention to Islamic spiritual values as an influential value category in the buying behaviors and intentions of Iranian consumers. Undoubtedly, identifying these values can be an introduction to studying behaviors influenced by values and a powerful tool for managers to predict and evaluate Islamic consumers’ behavior and lifestyles.

Details

Journal of Islamic Marketing, vol. 14 no. 9
Type: Research Article
ISSN: 1759-0833

Keywords

Article
Publication date: 8 April 2021

Adnan Malik, Karim Ullah, Shafiullah Jan, Muhammad Atiq and Ali Abdullah

This study aims to describe the role of knowledge diffusion in evolving governance principles for Islamic banking.

Abstract

Purpose

This study aims to describe the role of knowledge diffusion in evolving governance principles for Islamic banking.

Design/methodology/approach

This study develops a discursive theoretical debate using the discourse analysis method on the Sharīʿah principles related to interest (Riba), excessive uncertainty (Gharrar) and profit and loss sharing and their convergence with the conventional banking principles of profitability, solvency and liquidity.

Findings

The study proposes a novel framework that describes how knowledge diffusion bridge-up the Sharīʿah and banking principles in terms of integration of banking principles by Sharīʿah scholars, integration of Sharīʿah principles by managers and the resultant, emergent principles for the governance of Islamic banking.

Practical implications

The proposed framework can inform professionals on how knowledge of banking practices and Sharīʿah can help them in governing Islamic banking. The Board of Directors may adopt a holistic approach for encouraging enhanced interactions between Sharīʿah scholars and managers. Such interaction may be increasing harmony, reducing conflicts and better coordination resulting in Sharīʿah-compliant and market wise viable products and services, thus increasing banking profitability.

Originality/value

This is the first study, which acknowledges and illustrates the role of the knowledge diffusion process in evolving governance principles for Islamic banks. This paper contributes to the theory of corporate governance by using the knowledge, aptitude and practice theory lens to examine conceptually how Islamic banking governance principles emerged through the knowledge diffusion process.

Details

International Journal of Islamic and Middle Eastern Finance and Management, vol. 14 no. 4
Type: Research Article
ISSN: 1753-8394

Keywords

1 – 10 of 545