Search results

1 – 7 of 7
Article
Publication date: 28 December 2021

Craig Proctor-Parker and Riaan Stopforth

The purpose of the research has been the primary consideration and evaluation of a cost effective, reliable, robust and simple process of radio frequency identification…

145

Abstract

Purpose

The purpose of the research has been the primary consideration and evaluation of a cost effective, reliable, robust and simple process of radio frequency identification (RFID)-based stock control, asset management and monitoring of concrete safety bollards used in the road environment. Likewise, the consideration of the use of the same system and technology to other items in and around the general road infrastructure.

Design/methodology/approach

The research approach undertaken has been an evaluation of the use of currently available RFID technology, with a key emphasis on low cost, ease of use, reliability and convenience. Practical field exercises completed in considering the relevant RFID tags and readers and associated software and apps and necessary software integration and development have been undertaken. At the same time, evaluating the specific limits created in the specific environment is being applied. Of particular interest has been the use of a moving scan in a vehicle drive-through or pass-bye, type reading system. This has been determined to be viable and completely practical, drastically reducing the key issue of time-taken. Practical application of the system from idea to real life application has been undertaken. The integration of the use of the RFID tag and reader system with necessary and related software to database upload and storage has been established. The creation of an online facility to allow the appropriate use of the data and to include the convenient output of an asset report has been undertaken.

Findings

The findings have provided the necessary insight confirming the use of RFID technology as a simple yet reliable, cost effective and adaptable stock control, asset management and geo-locating system in the road environment. The use of such systems in this particular environment is in its infancy, and is perhaps novel and original in the specific aspect of using the system to stock control, manage and monitor road safety concrete bollards and other roadside objects in the road environment.

Originality/value

To establish if in fact, stock control geo-locating can be reliably undertaken with the use of RFID tags and readers in the specific road and road construction environment, particularly with the use of moving RFID reading of passive tags. To establish the minimum requirements of a field usable RFID tag and reader, specifically applicable to the concrete safety bollards, however to other roadside furniture. To identify the minimum requirements of a function, simple app to minimise general requirements of the overall stock control and monitoring of the RFID-tagged objects. To establish the possibility of reading the tag data, global positioning system (GPS) location and video imaging footage as a single operation function. To determine the basic parameters or limits of the GPS geo-locating, on the proposed products selected and overall system. To determine the current best practice in respect of reasonable accuracy and detail in relation to price considerations to a fully function stock control and monitoring system. To identify the minimum requirements of an online database to receive, house and provide ongoing access to and report on the data. To identify the key differences and benefits between traditional stock control and monitoring systems, against that of proposed RFID tag, read and geo-locating system.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 8 December 2017

Riaan Stopforth and Andrew Mangezi

A contactless electromyography (EMG) electrodes design and development for prosthetics, particularly the Touch Hand 3, was the main objective of this paper. The correlation…

Abstract

Purpose

A contactless electromyography (EMG) electrodes design and development for prosthetics, particularly the Touch Hand 3, was the main objective of this paper. The correlation between EMG electrodes and patch antenna are described, with the problem relating to the dimensions of the covidien electrodes. The purpose of this paper is to improve the signal strength of the EMG electrodes and having them to not be in contact with the skin to cause irritation in the person.

Design/methodology/approach

A combination of the contact covidien electrodes and aluminium foil was used to develop electrodes that were in a similar configuration than a Yagi antenna. Different layers of patch elements were designed, developed and implemented.

Findings

Different layers of Yagi-patch electrodes are tested with different volunteers and compared with the average signal strengths obtained from the covidien electrodes. An improvement in signal strength with the Yagi-patch electrodes has been found.

Practical implications

The purpose of the work was to design, develop and test EMG electrodes that are cost-effective, reusable and able to improve the signal strengths that are recorded, for better functionality of prosthetic devices.

Originality/value

The integration of EMG and antennae theory to implement a Yagi-patch EMG electrode to improve on signal reception. The electrodes have the properties of being cheap, easy available, can eliminate direct contact and avoiding patches on the skin. Comparison of different layered electrodes with the contactless electrodes close to the skin. Comparison of the different electrodes on a silicone sleeve, which are commonly worn by amputees, placed between the skin and the prosthetic’s socket. Testing the Yagi-patch electrodes with an application with the prosthetic Touch Hand, to allow for the control of a system such as the Touch Hand.

Details

Sensor Review, vol. 38 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 January 2019

Riaan Stopforth, Craig Proctor-Parker and Shaniel Davrajh

The purpose of this paper includes results of some of the tests involved for the design and implementation of low-cost crash anthropomorphics (ATPs) fitted with sensory systems to…

Abstract

Purpose

The purpose of this paper includes results of some of the tests involved for the design and implementation of low-cost crash anthropomorphics (ATPs) fitted with sensory systems to measure forces that would have been experienced by passengers in the vehicle, commonly used for public transport within South Africa.

Design/methodology/approach

This paper presents the description of the implemented low cost ATPs and the analysis of the data obtained from the sensory system within the torso of the ATPs and in the head of a single ATP, to identify if a documented threshold is exceeded. The autopsy of the ATPs is performed to identify injuries.

Findings

The recorded results showed the type of injuries that could have occurred when an accident has occurred with occupant in the minibus taxi. The autopsy performed on the ATPs showed feasible injuries that could be obtained by a person in a similar scenario.

Research limitations/implications

The ATPs were to be designed and constructed with the sensory system, with a budget of ZAR13,000/US$1,000.

Originality/value

The contributions of this paper are as follows: present the test results of two ATPs, and discuss them, for a loss of control of a minibus on a wet surface, which has been indicated as a world first test; And identify the need for a data fusion of sensory information to evaluate the injuries with the autopsy performed.

Details

Journal of Engineering, Design and Technology, vol. 17 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 21 March 2016

Drew van der Riet, Riaan Stopforth, Glen Bright and Olaf Diegel

This paper aims to explore the electronic design of the Touch Hand: a low-cost electrically powered prosthetic hand. The hand is equipped with an array of sensors allowing for…

Abstract

Purpose

This paper aims to explore the electronic design of the Touch Hand: a low-cost electrically powered prosthetic hand. The hand is equipped with an array of sensors allowing for position control and haptic sensation. Pressure sensors are used on the fingertips to detect grip force. A temperature sensor placed in the fingertip is used to measure the contact temperature of objects. Investigations are made into the use of cantilever vibration sensors to detect surface texture and object slippage. The hand is capable of performing a lateral grip of 3.7 N, a power grip of 19.5 N and to passively hold a weight of up to 8 kg with a hook grip. The hand is also tested on an amputee and used to perform basic tasks. The amputee took 30 min to learn how to operate the hands basic gripping functions.

Design/methodology/approach

Problems of previous prosthetic hands were investigated, followed by ways to improve or have similar capabilities, yet keeping in mind to reduce the price. The hand was then designed, simulated, developed and then tested. The hand was then displayed to public and tested with an amputee.

Findings

The Touch Hand’s capabilities with the usage of the low-cost materials, components and sensory system was obtained in the tests that were conducted. The results are shown in this paper to identify the appropriateness of the sensors for a usage while the costs are reduced. Furthermore, models were developed from the results obtained to take into account factors such as the non-slip material.

Research limitations/implications

The research was restricted to a US$1,000 budget to allow the availability of a low-cost prosthetic hand.

Practical implications

The Touch Hand had to have the ability to supply the amputee with haptic feedback while allowing the basic grasping of objects. The commercial value is the availability of an affordable prosthetic hand that can be used by amputees in Africa and other Lower-Income countries, yet allowing a more advanced control system compared to the pure mechanical systems currently available.

Social implications

The Touch Hand has the ability to give amputees affected in war situations the ability to grasp objects in a more affordable manner compared to the current available options. Feedback from amputees about the current features of the Touch Hand was very positive and it proves to be a way to improve society in Lower-Income countries in the near future. A sponsorship program is being developed to assist amputees with the costs of the Touch Hand.

Originality/value

The contributions of this research is a low-cost prototype system than can be commercialized to allow amputees in the Lower-Income countries to have the ability of a prosthetic hand. A sensory system in the hand is also explained which other low-cost prosthetic hands do not have, which includes temperature, force and vibration. Models of the sensors used that are developed and calibrated to the design of the hand are also described.

Details

Sensor Review, vol. 36 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Book part
Publication date: 18 January 2024

Mahendra Gooroochurn and Riaan Stopforth

Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and…

Abstract

Industry 4.0 has been identified as a key cornerstone to modernise economies where man and machines complement each other seamlessly to achieve synergies in decision-making and productivity for contributing to SDG 8: Decent Work and Economic Growth and SDG 9: Industry, Innovation and Infrastructure. The integration of Industry 4.0 remains a challenge for the developing world, depending on their current status in the industrial revolution journey from its predecessors 1.0, 2.0 and 3.0. This chapter reviews reported findings in literature to highlight how robotics and automated systems can pave the way to implementing and applying the principles of Industry 4.0 for developing countries like Mauritius, where data collection, processing and analysis for decision-making and prediction are key components to be integrated or designed into industrial processes centred heavily on the use of artificial intelligence (AI) and machine learning techniques. Robotics has not yet found its way into the various industrial sectors in Mauritius, although it has been an important driver for Industry 4.0 across the world. The inherent barriers and transformations needed as well as the potential application scenarios are discussed.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 1 March 2013

Riaan Stopforth

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Abstract

Purpose

The purpose of this paper is to investigate the mechanical, kinematic and biological aspects that would be required for a customized upper limb exoskeleton prototype operation.

Design/methodology/approach

The research contained a literature survey, design, simulation, development and testing of an exoskeleton arm.

Findings

An adjustable/customizable exoskeleton arm was developed with a kinematic model to allow the desired motion. Tests were performed to determine the feasibility of the system.

Originality/value

The paper shows how the authors researched, designed and developed an exoskeleton arm that had similar mechanical properties to those of a biological arm. The exoskeleton must allow customization and be adaptable to the operator, without the need for major alterations.

Details

Industrial Robot: An International Journal, vol. 40 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

1 – 7 of 7