Search results

1 – 2 of 2
Article
Publication date: 2 February 2024

Quntao Wu, Qiushi Bo, Lan Luo, Chenxi Yang and Jianwang Wang

This study aims to obtain governance strategies for managing the complexity of megaprojects by analyzing the impact of individual factors and their configurations using the…

Abstract

Purpose

This study aims to obtain governance strategies for managing the complexity of megaprojects by analyzing the impact of individual factors and their configurations using the fuzzy-set qualitative comparative analysis (fsQCA) method and to provide references for project managers.

Design/methodology/approach

With the continuous development of the economy, society and construction industry, the number and scale of megaprojects are increasing, and the complexity is becoming serious. Based on the relevant literature, the factors affecting the complexity of megaprojects are determined through case analysis, and the paths of factors affecting the complexity are constructed for megaprojects. Then, the fsQCA method is used to analyze the factors affecting the complexity of megaprojects through 245 valid questionnaires from project engineers in this study.

Findings

The results support the correlation between the complexity factors of megaprojects, with six histological paths leading to high complexity and seven histological paths leading to low complexity.

Originality/value

It breaks the limitations of the traditional project complexity field through a “configuration perspective” and concludes that megaproject complexity is a synergistic effect of multiple factors. The study is important for enriching the theory of megaproject complexity and providing complexity governance strategies for managers in megaproject decision-making.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 2 January 2023

Javad Rahmani Fard, Saadat Jamali Arand and Siroos Hemmati

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching…

Abstract

Purpose

In this paper, an improved multiobjective particle swarm optimization (PSO) algorithm is proposed to optimize a three-phase, 12-slot, 19-pole, yokeless axial-field flux-switching permanent magnet (YASA-AFFSPM) motor.

Design/methodology/approach

Based on the structural characteristics of the YASA-AFFSPM, a mathematical model is established to calculate the main size of the YASA-AFFSPM motor. The split ratio, stator axial length, sandwiching pole angle, rotor pole angle, PM arc and number of conductors per slot are selected as optimization variables. Also, the efficiency, power factor, cogging torque and average torque are considered as the optimization objectives. The objectives are optimized by combining the improved multiobjective PSO algorithm with electromagnetic calculation.

Findings

Based on the proposed algorithm, the investigated motor is optimized. The on-load efficiency, power factor and average torque of the motor performance have increased by 0.87%, 3.13% and 10.39%, respectively. Moreover, the cogging torque and slot fill factor have undergone decreases of 8.57% and 3.34%, respectively. Finally, the effectiveness of the algorithm is verified using experiment results.

Originality/value

So far, no comprehensive report has been observed on the optimization of the YASA-AFFSPM motor using evolutionary algorithms and the study of the effect of the motor parameters. Therefore, in this paper, the authors decided to investigate the effect of YASA-AFFSPM motor parameters and improve motor performance with the improved PSO method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2