Search results

1 – 10 of 14
Article
Publication date: 30 July 2019

Jianzhong Shang, Xin Li, Zhuo Wang, Rong Wang and Hong Zhu

This study aims to investigate rheological and extrusion behavior of thermosetting epoxy resins, which to find the universal property and printing parameters for extrusion-based…

Abstract

Purpose

This study aims to investigate rheological and extrusion behavior of thermosetting epoxy resins, which to find the universal property and printing parameters for extrusion-based rapid prototyping applications.

Design/methodology/approach

The thickener proportion greatly influences its viscosity and rheological behavior and therefore plays an important role in the shape of the cross-section of the extrudate.

Findings

A pseudoplastic (shear-thinning) is a basic requirement for obtaining extruded lines with plump cross-sections. In addition to the effects of the rheological behavior of the composite, shape maintenance and its wettability on the substrate, the cross-sectional geometry of the extrudate is also strongly affected by printing process parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate and critical nozzle height. Proper combinations of these process parameters are necessary to obtain single-line extrudates with plump cross-sections and 3-D objects with dimensional accuracy, uniform wall thickness, good wall uprightness and no wall slumping. Formulas and procedures for determining these extrusion parameters are proposed and demonstrated in experiments.

Originality/value

The results obtained have been explained in terms of the interactions among the rheological properties of the composite, the shear rate imposed on the composite during extrusion, the wettability of the composite on the substrate and the shape maintenance of the composite during extrusion.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 June 2022

Rong Wang, Yongxiong Chen, Xiuqian Peng, Nan Cong, Delei Fang, Xiubing Liang and Jianzhong Shang

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to…

Abstract

Purpose

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to introduce a new algorithm for dual-material 3D printing design.

Design/methodology/approach

A novel topology design method: solid isotropic material with penalization (SIMP) for hybrid lattice structure is introduced in this paper. This algorithm extends the traditional SIMP topology optimization, transforming the original 0–1 optimization into A–B optimization. It can be used to optimize the spatial distribution of bi-material composite structures.

Findings

A novel hybrid structure with high damping and strength efficiency is studied as an example in this work. By using the topology method, a hybrid Kagome structure is designed. The 3D Kagome truss with face sheet was manufactured by selective laser melting technology, and the thermosetting polyurethane was chosen as filling material. The introduced SIMP method for hybrid lattice structures can be considered an effective way to improve lattice structures’ stiffness and vibration characteristics.

Originality/value

The fabricated hybrid lattice has good stiffness and damping characteristics and can be applied to aerospace components.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15701

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 12 March 2018

Rong Wang, Jianzhong Shang, Xin Li, Zhuo Wang and Zirong Luo

This paper aims to present a new topology method in designing the lightweight and complex structures for 3D printing.

Abstract

Purpose

This paper aims to present a new topology method in designing the lightweight and complex structures for 3D printing.

Design/methodology/approach

Computer-aided design (CAD) and topology design are the two main approaches for 3D truss lattices designing in 3D printing. Though these two ways have their own advantages and have been used by the researchers in different engineering situations, these two methods seem to be incompatible. A novel topology method is presented in this paper which can combine the merits of both CAD and topology design. It is generally based on adding materials to insufficient parts in a given structure so the resulting topology evolves toward an optimum.

Findings

By using the topology method, an optimized-Kagome structure is designed and both 3D original-Kagome structure and 3D optimized-Kagome structure are manufactured by fused deposition modeling (FDM) 3D printer with ABS and the compression tests results show that the 3D optimized-Kagome has a higher specific stiffness and strength than the original one.

Originality/value

The presented topology method is the first work that using the original structure-based topology algorithm other than a boundary condition-based topology algorithm for 3D printing lattice and it can be considered as general way to optimize a commonly used light-weight lattice structure in strength and stiffness.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Hong Zhu

This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins…

Abstract

Purpose

This paper aims to consider a problem of assembly sensitivity in a multi-station assembly process. The authors focus on the assembly process of aircrafts, which includes cabins and inertial navigation system (INSs), and establish the assembly process state space model for their assembly sensitivity research.

Design/methodology/approach

To date, the process-related errors that cause large variations in key product characteristics remains one of the most critical research topics in assembly sensitivity analysis. This paper focuses on the unique challenges brought about by the multi-station system: a system-level model for characterizing the variation propagation in the entire process, and the necessity of describing the system response to variation inputs at both station-level and single fixture-level scales. State space representation is used to describe the propagation of variation in such a multi-station process, incorporating assembly process parameters such as fixture-locating layout at individual stations and station-to-station locating layout change.

Findings

Following the sensitivity analysis in control theory, a group of hierarchical sensitivity indices is defined and expressed in terms of the system matrices in the state space model, which are determined by the given assembly process parameters.

Originality/value

A case study of assembly sensitivity for a multi-station assembly process illustrates and validates the proposed methodology.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 7 April 2015

Yujun Cao, Xin Li, Zhixiong Zhang and Jianzhong Shang

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision…

1479

Abstract

Purpose

This paper aims to clarify the predicting and compensating method of aeroplane assembly. It proposes modeling the process of assembly. The paper aims to solve the precision assembly of aeroplane, which includes predicting the assembly variation and compensating the assembly errors.

Design/methodology/approach

The paper opted for an exploratory study using the state space theory and small displacement torsor theory. The assembly variation propagation model is established. The experiment data are obtained by a real small aeroplane assembly process.

Findings

The paper provides the predicting and compensating method for aeroplane assembly accuracy.

Originality/value

This paper fulfils an identified need to study how the assembly variation propagates in the assembly process.

Details

Assembly Automation, vol. 35 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 23 October 2007

Jianzhong Shang, Tariq Sattar, Shuwo Chen and Bryan Bridge

The paper aims to develop a robot that climbs on non‐ferrous surfaces, e.g. aircraft wings and fuselages, carrying a heavy payload up to 18 kg including scanning arm and various…

1595

Abstract

Purpose

The paper aims to develop a robot that climbs on non‐ferrous surfaces, e.g. aircraft wings and fuselages, carrying a heavy payload up to 18 kg including scanning arm and various equipments, for non‐destructive testing (NDT).

Design/methodology/approach

This robot in the study uses vacuum suction cups for adhesion, and two pairs of pneumatic cylinders to drive itself, moving in two directions in stepping gait. A rotation mechanism in the centre is used to correct the off‐course deviations by ± 5 degrees. Multiple universal joints are used to make every single suction cup, every robot foot and the whole structure flexible to negotiate with varying surface curvatures presented in different parts of aircraft. This flexible structure is also rigid once the robot is stuck on the surface to enable the NDT inspection being carried out reliably.

Findings

The paper finds that the walking speed is limited by the cylinder stroke, time for generating vacuum and changing legs. Although most NDT inspection is time‐consumable, it is still desirable to increase the robot speed.

Practical implications

The application of this robotic NDT can significantly reduce the cost of aircraft inspection, eliminate labour‐intensive and monotonous inspection tasks and eliminate the need for an operator to work in confined and dangerous spaces.

Originality/value

The paper introduces the structure that combines flexibility and rigidity for a robot climbing on non‐ferrous curvatures.

Details

Industrial Robot: An International Journal, vol. 34 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 May 2008

Jianzhong Shang, Bryan Bridge, Tariq Sattar, Shyamal Mondal and Alina Brenner

The project Climbing Robot Cell for Fast and Flexible Manufacture of Large Scale Structures seeks to modernise and take into the future the technology of the manufacture of large…

1665

Abstract

Purpose

The project Climbing Robot Cell for Fast and Flexible Manufacture of Large Scale Structures seeks to modernise and take into the future the technology of the manufacture of large fixed welded structures. It creates a transportable manufacturing cell consisting of a team of cooperating climbing robot work tools whose activities are coordinated and integrated through a central intelligence. The purpose of this paper is to present a wheeled robot, called NDT robot, designed for the real time inspection of long weld lines simultaneously with the welding process.

Design/methodology/approach

Neodymium permanent magnets are used for adhesion, which are capable of producing a maximum adhesion pressure of 4 × 104 Nm−2 at a 20 mm air gap. The strong neodymium magnets give the robot a high payload carrying capability. The arrangement of the magnet array increases its performance at large air gaps so that the robot has excellent capability to overcome obstacles, such as weld caps. The design of the wheeled robot with two sections jointed by a hinge joint has the advantage of high speed and good manoeuvrability, as well as working on curved surfaces and transferring between angled adjoining surfaces.

Findings

The NDT robot has been developed with the capability of climbing on steel walls carrying the specified payload and the ability to overcome the obstacles. The robot is also able to climb on curved surfaces with excellent manoeuvrability, and transfer between angled adjoining surfaces.

Originality/value

The arrangement of the magnet array enables the robot to retain a strong holding force at big air gap, so that the ability of the robot to overcome obstacles and work on curvatures is strengthened. The two‐section design improves the robot's performance on curvatures and enables it to transfer between angled adjoining surfaces.

Details

Industrial Robot: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 May 2018

Jiawei Feng, Jianzhong Fu, Zhiwei Lin, Ce Shang and Bin Li

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in…

Abstract

Purpose

T-spline is the latest powerful modeling tool in the field of computer-aided design. It has all the merits of non-uniform rational B-spline (NURBS) whilst resolving some flaws in it. This work applies T-spline surfaces to additive manufacturing (AM). Most current AM products are based on Stereolithograph models. It is a kind of discrete polyhedron model with huge amounts of data and some inherent defects. T-spline offers a better choice for the design and manufacture of complex models.

Design/methodology/approach

In this paper, a direct slicing algorithm of T-spline surfaces for AM is proposed. Initially, a T-spline surface is designed in commercial software and saved as a T-spline mesh file. Then, a numerical method is used to directly calculate all the slicing points on the surface. To achieve higher manufacturing efficiency, an adaptive slicing algorithm is applied according to the geometrical properties of the T-spline surface.

Findings

Experimental results indicate that this algorithm is effective and reliable. The quality of AM can be enhanced at both the designing and slicing stages.

Originality/value

The T-spline and direct slicing algorithm discussed here will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 24 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 September 2019

Bin Li, Jianzhong Fu, Yongjie Jessica Zhang, Weiyi Lin, Jiawei Feng and Ce Shang

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information…

Abstract

Purpose

Majority of the existing direct slicing methods have generated precise slicing contours from different surface representations, they do not carry any interior information. Whereas, heterogeneous solids are highly preferable for designing and manufacturing sophisticated models. To directly slice heterogeneous solids for additive manufacturing (AM), this study aims to present an algorithm using octree-based subdivision and trivariate T-splines.

Design/methodology/approach

This paper presents a direct slicing algorithm for heterogeneous solids using T-splines, which can be applied to AM based on the fused deposition modeling (FDM) technology. First, trivariate T-splines are constructed using a harmonic field with the gradient direction aligning with the slicing direction. An octree-based subdivision algorithm is then used to directly generate the sliced layers with heterogeneous materials. For FDM-based AM applications, the heterogeneous materials of each sliced layer are discretized into a finite number of partitions. Finally, boundary contours of each separated partition are extracted and paired according to the rules of CuraEngine to generate the scan path for FDM machines equipped with multi-nozzles.

Findings

The experimental results demonstrate that the proposed algorithm is effective and reliable, especially for solid objects with multiple materials, which could maintain the model integrity throughout the process from the original representation to the final product in AM.

Originality/value

Directly slicing heterogeneous solid using trivariate T-splines will be a powerful supplement to current technologies in AM.

Details

Rapid Prototyping Journal, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 14