Search results

1 – 4 of 4
Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 March 2023

Alexandra Idoko, Ernest Mbamalu Ezeh, Obiechinne Chigbue Philip, Onubuiwe Nelson Nwali, Patrick Okechukwu Ugwudike, Peter Chinedu Agu, Tadese Adediura Ayomide, Anne Nebeolisa Onyinye and Nneoma Okoroha Blessing

The purpose of this study was to examined the health effects of raw and cooked aqueous and methanol extracts of Vigna unguiculata on kidney function in Wistar rats.

Abstract

Purpose

The purpose of this study was to examined the health effects of raw and cooked aqueous and methanol extracts of Vigna unguiculata on kidney function in Wistar rats.

Design/methodology/approach

Thirty-six Wistar rats (weighing 160 ± 10 g) were randomly assigned into nine (9) groups (n = 4). Group I (control): no extract. Groups II and III (aqueous extract of the cooked 350 mg/kg and 550 mg/kg). Groups IV and V (methanol extracts of cooked 350 mg/kg and 550 mg/kg). Groups VI and VII (methanol extracts of raw 350 mg/kg and 550 mg/kg). Groups VIII and IX (aqueous extract of raw 350 mg/kg and 550 mg/kg). After the seventh day of the trial, the rats were euthanized with chloroform, and blood samples were collected for biochemical analysis.

Findings

Results showed that the doses applied for cooked and raw V. unguiculata significantly (p < 0.05) enhanced kidney functions by increasing the body weight, glucose level, concentration of serum urea, creatinine, total protein, potassium and chloride in test groups compared with control. The packed cell volume and haemoglobin concentrations of raw aqueous extract at 550 mg/kg (36.5 ± 5.1; 12.3 ± 2.8) were significantly (p = 0.001) higher (29.8 ± 11.8; 10.3 ± 3.9) than the 350 mg/kg dose of the same extract, and cooked aqueous extract at 350 mg/kg dose was significantly (p = 0.001) higher (28.0 ± 10.1; 9.3 ± 3.4) than that of 550 mg/kg (25.8 ± 4.9; 8.8 ± 3.9) dose of the extracts.

Originality/value

The nutritional content of V. unguiculata potentially can augment the nutritional content of a diet and to a large extent, the regular consumers’ health. Essentially, V. unguiculata is composed of both macro and micronutrients capable of promoting normal kidney function.

Details

Nutrition & Food Science , vol. 53 no. 7
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 11 September 2020

Ernest Mbamalu Ezeh and O.D. Onukwuli

The purpose of this paper is to observe the effect of cheap cow horn ash particles (CHAp) filler as a possible replacement for expensive fillers on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to observe the effect of cheap cow horn ash particles (CHAp) filler as a possible replacement for expensive fillers on the mechanical properties of polyester-banana peduncle fibre (BPF) composites were evaluated using standard procedures.

Design/methodology/approach

Composite was developed using CHAp as a filler component, polyester resin and BPF, with the filler of varying percentage weights (5%, 10%, 15% and 20%), at particle sizes of 125 µm, using hand lay-up technique. The physicochemical properties of CHAp were examined through x-ray fluorescence (XRF), X-ray diffractometer (XRD), transmission electron microscopy, scanning electron microscope, energy dispersion spectrometric analysis (EDS) and density. Mechanical properties of the developed composites were also examined.

Findings

The results showed that the tensile properties and impact strength of the composites reduced marginally with the incorporation of the cow horn ash particle as a filler. However, the flexural strength of the composites increased progressively with the incorporation of BPF as the fibre loading increased. The major constituents of CHAp were CaO from XRF study, calcite (CaCO3) from XRD study and Ca in EDS study in accordance with the analytical parameter, which showed a major component of calcium. The high value of CaCO3 in CHAp improved flexural and impact strengths of the composites. CHAp presented around solid and irregular shape particle characteristic of most fillers with an average particle size of 98.13 nm. The tensile and flexural strengths of the polyester matrix composites obtained at 7.5% BPF: 7.5% CHAp was 117.87 MPa depicting satisfactory mechanical characteristics.

Originality/value

Generally, cow horn ash particle exhibited adequate filler component potential in composite production in keeping with its property effects on the mechanical properties of polyester-BPF composites.

Details

World Journal of Engineering, vol. 17 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2021

Onukwuli O.D. and Ernest Mbamalu Ezeh

This paper aims to examine the fire retardant property potentials of cow horn ash particles (CHAp) bio-additive and aluminium trihydrate (AH), a traditional inorganic…

37

Abstract

Purpose

This paper aims to examine the fire retardant property potentials of cow horn ash particles (CHAp) bio-additive and aluminium trihydrate (AH), a traditional inorganic fire-retardant additive, respectively, in banana peduncle fibre (BPF) reinforced polyester composites. An attempt was made to comparatively analyse the fire retardant capacity potentials of CHAp, a bio-material waste that is readily available, at no cost, as a potential fire retardant material for composites manufacture with a conventional inorganic fire retardant additive (AH).

Design/methodology/approach

The fibre used in this research was derived from the banana peduncle. The matrix is unsaturated polyester. A scanning electron microscope was used to analyze the particle size of the carbonized CHAp. The composites were compounded using 0%, 2.5%, 5%, 7.5% and 10% of CHAp and AH, respectively. A cone calorimeter instrument was used in the analysis to obtain combustion information of CHAp and AH formulated polyester-BPF composites. Test samples were cut to the dimensions of 100 × 100 mm. All materials are conditioned at 23 ± 30 °C and the relative humidity of 50 ± 5% for 24 h before testing. The samples were wrapped with aluminium foil around the back and edges before placing the samples on the holder and then into the cone calorimeter. The samples were backed with a non-combustible insulating refractory material (brick). The samples were orientated horizontally and exposed to irradiances of 50 kW/m2 at a temperature of approximately 6000 °C. The samples were pilot ignited and ran in triplicate; the average readings of the three runs were taken.

Findings

The results obtained from the analysis depicted similar fire retardant properties for formulations with CHAp and AH, respectively. Composites formulated with CHAp exhibited delayed ignition time of 25%, increased end of burning time of 14.24% and reduced total heat release rate of 9.07% for the developed composites. The developed BPF/CHAp/polyester composites yield composites with fire retardancy, which would find relevance in the engineering material industry.

Originality/value

CHAp, therefore, would suffice as an alternative to the inorganic, expensive and non-environmental friendly, conventional fire retardant additives used in composites manufacture.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 4 of 4