Search results

1 – 10 of 677
Article
Publication date: 11 August 2021

Bin Zheng, Yi Cai and Kelun Tang

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the…

Abstract

Purpose

The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine.

Design/methodology/approach

The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization.

Findings

After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased.

Originality/value

This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 20 December 2017

Haidong Yu, Chunzhang Zhao, Bin Zheng and Hao Wang

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the…

Abstract

Purpose

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the performances, reliability and service life of the products. To achieve the automatic assembly of large-scale thin-walled structures, the sizing force of the structures with deviations should be calculated, and its assembling ability should be studied before assembly process. The purpose of this study is to establish a precise model to describe the deviations of structures and to study the variation propagation during assembly process.

Design/methodology/approach

Curved thin-walled structures are modeled by using the shell element via the absolute nodal coordinate formulation. Two typical deviation modes of the structure are defined. The generalized elastic force of shell elements with anisotropic materials is deduced based on a continuum mechanics approach to account for the geometric non-linearity. The quasi-static method is introduced to describe the assembly process. The effects of the deviation forms, geometrical parameters of the thin-walled structures and material properties on assembly quality are investigated numerically.

Findings

The geometric non-linearity of structure and anisotropy of materials strongly affect the variation propagation and the assembly quality. The transformation and accumulation effects of the deviations are apparent in the multiple assembly process. The constraints on the structures during assembly can reduce assembly deviation.

Originality/value

The plate element via the absolute nodal coordinate formulation is first introduced to the variation propagation analysis. Two typical shape deviation modes are defined. The elastic force of structures with anisotropic materials is deduced. The variation propagation during the assembly of structures with various geometrical and material parameters is investigated.

Content available
437

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 1 March 2006

150

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Content available
Article
Publication date: 6 February 2017

Abstract

Details

Personnel Review, vol. 46 no. 1
Type: Research Article
ISSN: 0048-3486

Article
Publication date: 5 October 2012

Michael Lewrick, Tao Chen, Robert Raeside and Maktoba Omar

The purpose of this paper is to investigate the innovation capabilities of Chinese enterprises. It is important to understand these innovation capabilities and to find how they…

Abstract

Purpose

The purpose of this paper is to investigate the innovation capabilities of Chinese enterprises. It is important to understand these innovation capabilities and to find how they might relate to promoting innovativeness.

Design/methodology/approach

In this paper, data obtained from a survey of enterprises in the Chinese provinces Liaoning and Henan are analysed using multiple regression to ascertain how facets of innovation capabilities might enhance the likelihood of innovation success. Analysis is conducted for innovation defined as incremental, radical and the total of both.

Findings

It is found that focusing on customers tends to reduce innovation for Chinese companies, whilst competitor orientation, knowledge enhancement and management capability are associated with enhanced innovative ability.

Research limitations/implications

There are many determinants of innovation, notably as skills and attributes of the individual entrepreneur. In this paper the focus is on organisational facets and not on those of the individual. The paper shows the importance of monitoring competitors, as well as managing and enhancing knowledge.

Originality/value

The paper reports the analysis and extent of different capabilities for successful innovation from a unique data set from two provinces in China.

Details

Journal of Science and Technology Policy in China, vol. 3 no. 3
Type: Research Article
ISSN: 1758-552X

Keywords

Article
Publication date: 3 February 2020

Hongxia Qi and Ying Wu

The emulation of synapses is essential to neuromorphic computing systems. Despite remarkable progress has been made in the two-terminal device (memristor), three-terminal…

Abstract

Purpose

The emulation of synapses is essential to neuromorphic computing systems. Despite remarkable progress has been made in the two-terminal device (memristor), three-terminal transistors evoke greater attention because of the controlled conductance between the source and drain. The purpose of this paper is to investigate the synaptic plasticity of the TiO2 nanowire transistor.

Design/methodology/approach

TiO2 nanowire transistor was assembled by dielectrophoresis, and the synaptic plasticity such as paired-pulse facilitation, learning behaviors and high-pass filter were studied.

Findings

Facilitation index decreases with the increasing pulse interval. A bigger response current is obtained at the pulses with higher amplitude and smaller intervals, which is similar to the consolidated memory at the deeply and frequently learning. The increased current at the higher stimulus frequency demonstrates a promising application in the high-pass filter.

Originality/value

TiO2 nanowire transistors possess broad application prospects in the future neural network.

Details

Microelectronics International, vol. 37 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 22 March 2021

Yong Pan, Qin Molin, Tengxiao Guo, Lin Zhang, Bingqing Cao, Junchao Yang, Wen Wang and Xufeng Xue

This paper aims to give an overview about the state of wireless passive surface acoustic wave (SAW) gas sensor used in the detection of chemical vapor. It also discusses a variety…

Abstract

Purpose

This paper aims to give an overview about the state of wireless passive surface acoustic wave (SAW) gas sensor used in the detection of chemical vapor. It also discusses a variety of different architectures including delay line and array sensor for gas detection, and it is considered that this technology has a good application prospect.

Design/methodology/approach

The authors state the most of the wireless passive SAW methods used in gas sensing, such as CO2, CO, CH4, C2H4, NH3, NO2, et al., the sensor principles, design procedures and technological issues are discussed in detail; their advantages and disadvantages are also summarized. In conclusion, it gives a prospect of wireless passive SAW sensor applications and proposes the future research field might lie in the studying of many kinds of harmful gases.

Findings

In this paper, the authors will try to cover most of the important methods used in gas sensing and their recent developments. Although wireless passive SAW sensors have been used successfully in harsh environments for the monitoring of temperature or pressure, the using in chemical gases are seldom reported. This review paper gives a survey of the present state of wireless passive SAW sensor in gas detection and suggests new and exciting perspectives of wireless passive SAW gas sensor technology.

Research limitations/implications

The authors will review most of the methods used in wireless passive SAW sensor and discuss the current research status and development trend; the potential application in future is also forecasted.

Originality/value

The authors will review most of the methods used in wireless passive SAW sensor and discuss the current research status and development trend; the potential application in future is also forecasted.

Details

Sensor Review, vol. 41 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 October 2020

Bin Xiao, Xiaolin Zheng, Yi Zhou, Dan Yao and Yang Wan

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Abstract

Purpose

This study aims to evaluate the tribological behavior of water-lubricated rubber bearings sliding against stainless steel under different lubricate conditions.

Design/methodology/approach

The water-lubricated rubber bearings under various normal loads and sliding speeds were carried out on the ring-block friction test, and the wear morphology is test conducted by using scanning electron microscope.

Findings

The results indicate that the surface of water-lubricated rubber bearings has a more alternative friction coefficient and wear rate under seawater than other lubricate conditions. The seawater not only acts as a lubricating medium but also brings microstructure while corroding the rubber interface, thereby further enhancing the lubricating effect and storing abrasive debris.

Originality/value

In this paper, tribological properties of the water-lubricated rubber bearing on ring-block friction test has been investigated. Water-lubricated rubber bearing was carried out on various lubricate conditions, and the friction coefficient, wear rate and worn surface were analyzed. Also, the effects of sliding speeds were investigated.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0204/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Abstract

Details

The Significance of Chinatown Development to a Multicultural America: An Exploration of the Houston Chinatowns
Type: Book
ISBN: 978-1-80455-377-0

1 – 10 of 677