Search results

1 – 1 of 1
Article
Publication date: 20 May 2024

Mugahed Amran and Ali Onaizi

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an…

19

Abstract

Purpose

Low-carbon concrete represents a new direction in mitigating the global warming effects caused by clinker manufacturing. Utilizing Saudi agro-industrial by-products as an alternative to cement is a key support in reducing clinker production and promoting innovation in infrastructure and circular economy concepts, toward decarbonization in the construction industry. The use of fly ash (FA) as a cement alternative has been researched and proven effective in enhancing the durability of FA-based concrete, especially at lower replacement levels. However, at higher replacement levels, a noticeable impediment in mechanical strength indicators limits the use of this material.

Design/methodology/approach

In this study, low-carbon concrete mixes were designed by replacing 50% of the cement with FA. Varying ratios of nano-sized glass powder (4 and 6% of cement weight) were used as nanomaterial additives to enhance the mechanical properties and durability of the designed concrete. In addition, a 10% of the mixing water was replaced with EMs dosage.

Findings

The results obtained showed a significant positive impact on resistance and durability properties when replacing 10% of the mixing water with effective microorganisms (EMs) broth and incorporating nanomaterial additives. The optimal mix ratios were those designed with 10% EMs and 4–6% nano-sized glass powder additives. However, it can be concluded that advancements in eco-friendly concrete additive technologies have made significant contributions to the development of sophisticated concrete varieties.

Originality/value

This study focused at developing nanomaterial additives from Saudi industrial wastes and at presenting a cost-effective and feasible solution for enhancing the properties of FA-based concrete. It has also been found that the inclusion of EMs contributes effectively to enhancing the concrete's resistance properties.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 1 of 1