Search results

1 – 10 of over 3000
Article
Publication date: 10 October 2022

Kurt Wurthmann

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy…

Abstract

Purpose

This study aims to provide and illustrate the application of a framework for conducting techno-economic analyses (TEA) of early-stage designs for net-zero water and energy, single-family homes that meet affordable housing criteria in diverse locations.

Design/methodology/approach

The framework is developed and applied in a case example of a TEA of four designs for achieving net zero-water and energy in an affordable home in Saint Lucie County, Florida.

Findings

Homes built and sold at current market prices, using combinations of well versus rainwater harvesting (RWH) systems and grid-tied versus hybrid solar photovoltaic (PV) systems, can meet affordable housing criteria for moderate-income families, when 30-year fixed-rate mortgages are at 2%–3%. As rates rise to 6%, unless battery costs drop by 40% and 60%, respectively, homes using hybrid solar PV systems combined with well versus RWH systems cease to meet affordable housing criteria. For studied water and electricity usage and 6% interest rates, only well and grid-tied solar PV systems provide water and electricity at costs below current public supply prices.

Originality/value

This article provides a highly adaptable framework for conducting TEAs in diverse locations for designs of individual net-zero water and energy affordable homes and whole subdivisions of such homes. The framework includes a new technique for sizing storage tanks for residential RWH systems and provides a foundation for future research at the intersection of affordable housing development and residential net-zero water and energy systems design.

Details

International Journal of Housing Markets and Analysis, vol. 17 no. 2
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 2 April 2024

Andrew Swan, Anne Schiffer, Peter Skipworth and James Huntingdon

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Abstract

Purpose

This paper aims to present a literature review of remote monitoring systems for water infrastructure in the Global South.

Design/methodology/approach

Following initial scoping searches, further examination was made of key remote monitoring technologies for water infrastructure in the Global South. A standard literature search methodology was adopted to examine these monitoring technologies and their respective deployments. This hierarchical approach prioritised “peer-reviewed” articles, followed by “scholarly” publications, then “credible” information sources and, finally, “other” relevant materials. The first two search phases were conducted using academic search services (e.g. Scopus and Google Scholar). In the third and fourth phases, Web searches were carried out on various stakeholders, including manufacturers, governmental agencies and non-governmental organisations/charities associated with Water, Sanitation and Hygiene (WASH) in the Global South.

Findings

This exercise expands the number of monitoring technologies considered in comparison to earlier review publications. Similarly, preceding reviews have largely focused upon monitoring applications in sub-Saharan Africa (SSA). This paper explores opportunities in other geographical regions and highlights India as a significant potential market for these tools.

Research limitations/implications

This review predominantly focuses upon information/data currently available in the public domain.

Practical implications

Remote monitoring technologies enable the rapid detection of broken water pumps. Broken water infrastructure significantly impacts many vulnerable communities, often leading to the use of less protected water sources and increased exposure to water-related diseases. Further to these public health impacts, there are additional economic disadvantages for these user communities.

Originality/value

This literature review has sought to address some key technological omissions and to widen the geographical scope associated with previous investigations.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 24 April 2024

Garima Nema and Karunamurthy K.

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative…

Abstract

Purpose

This study aims to provide an alternative adoption to overcome the energy crisis and environmental effluence by comparative theoretical and trial testing analysis of an innovative combined condenser unit over traditional individual condenser unit water heating systems.

Design/methodology/approach

The presented innovative new unit of the combined condenser heat pipe works efficiently through its improved idea and unique design, providing uniform heating to improve the heat transfer and, finally, the temperature of water increases without enhancing the cost. In this design, all these five evaporator units were connected with a single combined condenser unit in such a manner that after the condensation of heat transfer fluid vapour, it goes equally into the evaporator pipe.

Findings

The maximum temperature of hot water obtained from the combined condenser heating system was 60.6, 55.5 and 50.3°C at a water flow rate of 0.001, 0.002 and 0.003 kg/s, respectively. The first and second law thermodynamic efficiency of the combined condenser heating system were 55.4%, 60.5% and 89.0% and 2.6%, 3.7% and 4.1% at 0.001, 0.002 and 0.003 kg/s of water flow rates, respectively. The combined condenser heat pipe solar evacuated tube heating system promoting progressive performance is considered efficient and environment-friendly compared to the traditional condenser unit water heating system.

Originality/value

Innovative combined condenser heat pipe evacuated tube collector assembly was designed and developed for the study. A comparative theoretical and experimental energy-exergy performance analysis was performed of innovated collective condenser and traditional individual condenser heat pipe water heating system at various mass flow rate.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 November 2021

Kamilla Zhalmurziyeva, Serik Tokbolat, Serdar Durdyev, Mohamad Y. Mustafa and Ferhat Karaca

This research aims to study a broad range of sustainability aspects and develop a set of indicators with their subjective relevance to each of the sustainability dimensions that…

Abstract

Purpose

This research aims to study a broad range of sustainability aspects and develop a set of indicators with their subjective relevance to each of the sustainability dimensions that will help to improve the sustainability level of the water system of Nur-Sultan (Kazakhstan).

Design/methodology/approach

The broader list of indicators (which were identified through a thorough review of the literature) was assessed by water-related industry professionals and experts who were asked to assess the compliance of suggested indicators to five criteria of sustainability using a Likert scale.

Findings

It was found that the highest-ranked indicators across all five categories were mainly related to the chemical and physical quality of water, followed by availability of individual water meters as well as water supply tariffs' adjustment to users' income, and issues of ageing infrastructure. The lowest-ranked indicators among all categories were mainly related to investments into research and development, water management and awareness, feedback systems and flexibility. The least ranked indicators are seen to be more related to the scenarios when basic needs are covered and the stakeholders have extra time and resources for advancing the levels of water infrastructure sustainability.

Practical implications

The ranked and categorized indicators can be used as a powerful decision-making tool to improve the sustainability of the water system of Nur-Sultan or any other city in a developing country.

Originality/value

By conducting this study, it was aimed to address the aforementioned gap in the field in terms of running a wider scope assessment of indicators rather than looking at conventional environmental and socio-economic aspects. This provides novelty to the study, especially in the context of developing countries that need more guidance in terms of sustainable development of the water-related infrastructure.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 9 April 2024

Celia López-Bravo and José Peral López

Faced with the growing need to find new viable water supply models for urban areas, this article studies and maps the strategies and identifies the key criteria of sustainable…

Abstract

Purpose

Faced with the growing need to find new viable water supply models for urban areas, this article studies and maps the strategies and identifies the key criteria of sustainable development present in pioneering water supply systems in the medieval period. The main aim is to determine which of its innovative principles could be applied in present-day cities.

Design/methodology/approach

From a methodological perspective, two types of cases were established, such as water supply models for human consumption and pre-industrial hydraulic systems, all of which are located in Italy. For the first group, the cases of Venice and Siena were analysed, while for the second, in the context of the cities along the Aemilian Way, the case of Bologna was selected.

Findings

Five key criteria resulted from the analysis of the cases: exploitation, self-sufficiency, maintenance, rationalisation and reuse. The said concepts were defined and contextualised within the framework of the Sustainable Development Goals.

Originality/value

The Middle Ages were a historic moment in technological reinvention, before the development of modern systems of sanitation. With very limited resources, these traditional systems focused on rational use and deep cultural and geographical knowledge. This is why its recognition is of great importance today, in a time full of instabilities, with a view to the work that needs to be done for the development of more sustainable communities.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Book part
Publication date: 18 January 2024

Deejaysing Jogee, Manta Devi Nowbuth, Virendra Proag and Jean-Luc Probst

It is now well-established that good water quality is associated with economic prosperity, reduced incidence on public health and the good functioning of the various ecosystems…

Abstract

It is now well-established that good water quality is associated with economic prosperity, reduced incidence on public health and the good functioning of the various ecosystems found in our environment. Water contamination is mostly related to both diffused (agricultural lands and geologic rock degradations) and point sources of pollution. Mauritius has many water resources which depend solely on precipitation for their replenishment. Water parameters which are of relevance include total dissolved solids (TDS), temperature, pH, electrical conductivity, turbidity, dissolved oxygen, dissolved and particulate organic carbon and major cations and anions. The traditional methods of analysis for these parameters are mostly using electrical and optical methods (probes and sensors in the field), while chemical titrations, Flame AAS and High-Performance Liquid Chromatography techniques are carried out in the laboratory. Image Classification techniques using neural networks can also be used to detect the presence of contaminants in water. In addition to basic water quality parameters, the field sensors range have been extended to cover important major ions and can now be integrated with Artificial Intelligence (AI)-based models for the prediction of variations in water quality to better protect human health and the environment, reduce operation costs of water and wastewater treatment plant unit processes.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 16 June 2022

Kuei-Chen Chiu

This paper aims to answer these questions: “Is the public adopting energy-saving and water-saving facilities because they want to save energy and water in their psychological…

Abstract

Purpose

This paper aims to answer these questions: “Is the public adopting energy-saving and water-saving facilities because they want to save energy and water in their psychological perception?”, “Is it convenient to use energy-saving and water-saving facilities?”, “If the inductive design of energy-saving and water-saving facilities attracts the public’s interest, the public is it more willing to install energy-saving and water-saving facilities in a widespread manner?” and “Can inductive energy-saving and water-saving facilities be introduced into the smart manufacturing system of manufacturing industries that require a lot of water to effectively save water and save costs for the company?”.

Design/methodology/approach

This paper aims to investigate the attitudes of employees toward using energy-saving and water-saving facilities by constructing a questionnaire based on the ABC (Affect, Behavior, Cognition) model to survey the attitudes of employees from the Southern and Eastern of Taiwan and establishing a structural equation modeling (SEM) to examine the relationship between affect, behavior and cognition while using energy-saving and water-saving facilities.

Findings

There are some findings in this paper that the affective design have a strongly significant positive impact for using energy-saving and water-saving facility in the proposed model. People are willing to use energy-saving and water-saving facilities but are more willing to adopt those energy-saving and water-saving products of smart designs, as those take into account the emotional factors. The critical factor for the public to adopt energy-saving and water-saving facilities is smart design, which incorporates emotional elements.

Research limitations/implications

There are still some limitations of this study that the ABC model can only be used as a psychological discussion, and the development and design of related facilities still needs to be jointly developed with professionals in related technical fields. The introduction of induction water supply facilities needs to be considered while the company introduces the design of the smart manufacturing system. Therefore, professionals related to induction water supply should participate in the planning at the initial stage of the company's concept of introducing the smart manufacturing system.

Practical implications

On the practical side, based on preliminary research conclusions, this study proposes to introduce inductive water supply into smart manufacturing systems for manufacturing companies that require a lot of water in their manufacturing processes. In practice, the company can actually save a lot of water, thereby saving costs and reducing waste water discharge.

Social implications

The results of this study show that the public has a cognition of energy-saving and water-saving. However, there is a Chinese proverb that “easy to know and hard to do”, when actually using facilities, convenience is an important consideration for public. Smart facilities of energy-saving and water-saving, in addition to the benefits of energy-saving and water-saving, it is easy to use, and interacts with users through inductive water supply, which can more emotionally attract people's willingness to use.

Originality/value

This study found that smart facilities, which can more emotionally attract people's willingness to use. On the academic side, this study proves that using the ABC theory to explore the public’s psychological affective, behavior and cognition response to the use of facilities is a very suitable method. On the practical side, based on preliminary research conclusions, this study proposes to introduce inductive water supply into smart manufacturing systems for manufacturing companies that require a lot of water in their manufacturing processes. In practice, the company can actually save a lot of water, thereby saving costs and reducing waste water discharge.

Article
Publication date: 2 June 2022

Muhammad Waresul Hassan Nipun, Md Ashik-Ur-Rahman, Sharmin Yousuf Rikta, Afshana Parven and Indrajit Pal

The effects of population growth in the developing world and climate change have increased the stress on available water resources. The majority of Rajshahi city, Bangladesh, is…

Abstract

Purpose

The effects of population growth in the developing world and climate change have increased the stress on available water resources. The majority of Rajshahi city, Bangladesh, is facilitated with groundwater withdrawal. As Bangladesh is a country of monsoon climate, reserved rainwater can be contributed as an alternative to extracted groundwater. This study aims to develop a framework for rooftop rainwater harvesting (RRWH) for domestic purposes and estimate the appropriate size of the storage tanks and their costs required to fulfill the annual drinking and cooking water demands through RRWH in Rajshahi city of Bangladesh.

Design/methodology/approach

A total of 100 single-story residential dwellings with varying rooftop areas were surveyed for the projection of RRWH potential. The relationship between the size and cost of a water tank and the rooftop areas of different houses is expressed using a general mathematical equation. Cost estimates for the proposed RRWH system for all houses have been completed, and a cost model illustrating the relationship between rooftop or catchment area and associated cost of RRWH system has been developed.

Findings

This study reveals that a maximum of 110.75 m3/year rainwater can be collected from a 100 m2 rooftop area of Rajshahi city. Moreover, this study finds that such harvesting of rainwater can reduce municipal water supply to the extent of almost 75%. Water samples collected from rooftops also revealed that if germs were removed through bacteria treatment, the collected rainwater potentially can be used for drinking and cooking purposes.

Originality/value

The novelty of this study is that it focused mainly on how significant RRWH can be to meet people’s daily required amount of water for household purpose and ascertain the cost reduction using the RWH method. This paper also is unique as it assessed the volume of the storage tank that is sufficient to distribute the necessary amount of water for drinking and cooking purpose as a sustainable alternative source in the dry season.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 15 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 26 October 2023

Fariz Huseynov and Jeanene Mitchell

The purpose of this paper is to spur further exploration of blockchain technologies for environmental peacebuilding, specifically through water management. Although the…

Abstract

Purpose

The purpose of this paper is to spur further exploration of blockchain technologies for environmental peacebuilding, specifically through water management. Although the environmental peacebuilding field acknowledges the potentially transformative nature of frontier technologies, most existing studies do not address how such technologies can contribute to peacebuilding through improved natural resource governance. Using a theory synthesis research design, this conceptual paper connects these studies to discuss how blockchain technologies in water management may contribute to environmental peacebuilding through the efficient and transparent management of natural resources.

Design/methodology/approach

The authors use a conceptual approach and a theory synthesis research design to present potential mechanisms through which blockchain technology can potentially contribute to environmental peacebuilding.

Findings

The authors discuss the limitations in the literature on environmental peacebuilding, blockchain and water management, concluding that the third generation of studies should focus on the role of frontier technologies. This approach should especially address the negative consequences of technology for peacebuilding objectives. The authors argue that blockchain applications in water management can potentially contribute to environmental peacebuilding objectives in three ways: (i) creating a mechanism for confidence-building in low-trust contexts through automated and transparent water transactions, (ii) facilitating postconflict economic development through attracting capital and increasing the efficiency of water management and (iii) improving governance through greater transparency and local participation in natural resource management.

Originality/value

To the best of the authors’ knowledge, this study is among the first to conceptually explore the use of blockchain technology for water management in the context of environmental peacebuilding. The insights from this study can guide policymakers of conflict sides that focus on resolving issues such as lack of governance and low state agency.

Details

Digital Policy, Regulation and Governance, vol. 26 no. 1
Type: Research Article
ISSN: 2398-5038

Keywords

1 – 10 of over 3000