Search results

1 – 10 of 148
Article
Publication date: 8 February 2024

Shaohua Yang, Murtaza Hussain, R.M. Ammar Zahid and Umer Sahil Maqsood

In the rapidly evolving digital economy, businesses face formidable pressures to maintain their competitive standing, prompting a surge of interest in the intersection of…

Abstract

Purpose

In the rapidly evolving digital economy, businesses face formidable pressures to maintain their competitive standing, prompting a surge of interest in the intersection of artificial intelligence (AI) and digital transformation (DT). This study aims to assess the impact of AI technologies on corporate DT by scrutinizing 3,602 firm-year observations listed on the Shanghai and Shenzhen stock exchanges. The research delves into the extent to which investments in AI drive DT, while also investigating how this relationship varies based on firms' ownership structure.

Design/methodology/approach

To explore the influence of AI technologies on corporate DT, the research employs robust quantitative methodologies. Notably, the study employs multiple validation techniques, including two-stage least squares (2SLS), propensity score matching and an instrumental variable approach, to ensure the credibility of its primary findings.

Findings

The investigation provides clear evidence that AI technologies can accelerate the pace of corporate DT. Firms strategically investing in AI technologies experience faster DT enabled by the automation of operational processes and enhanced data-driven decision-making abilities conferred by AI. Our findings confirm that AI integration has a significant positive impact in propelling DT across the firms studied. Interestingly, the study uncovers a significant divergence in the impact of AI on DT, contingent upon firms' ownership structure. State-owned enterprises (SOEs) exhibit a lesser degree of DT following AI integration compared to privately owned non-SOEs.

Originality/value

This study contributes to the burgeoning literature at the nexus of AI and DT by offering empirical evidence of the nexus between AI technologies and corporate DT. The investigation’s examination of the nuanced relationship between AI implementation, ownership structure and DT outcomes provides novel insights into the implications of AI in the diverse business contexts. Moreover, the research underscores the policy significance of supporting SOEs in their DT endeavors to prevent their potential lag in the digital economy. Overall, this study accentuates the imperative for businesses to strategically embrace AI technologies as a means to bolster their competitive edge in the contemporary digital landscape.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 May 2024

Kuo-Yi Lin and Thitipong Jamrus

Motivated by recent research indicating the significant challenges posed by imbalanced datasets in industrial settings, this paper presents a novel framework for Industrial…

18

Abstract

Purpose

Motivated by recent research indicating the significant challenges posed by imbalanced datasets in industrial settings, this paper presents a novel framework for Industrial Data-driven Modeling for Imbalanced Fault Diagnosis, aiming to improve fault detection accuracy and reliability.

Design/methodology/approach

This study addressing the challenge of imbalanced datasets in predicting hard drive failures is both innovative and comprehensive. By integrating data enhancement techniques with cost-sensitive methods, the research pioneers a solution that directly targets the intrinsic issues posed by imbalanced data, a common obstacle in predictive maintenance and reliability analysis.

Findings

In real industrial environments, there is a critical demand for addressing the issue of imbalanced datasets. When faced with limited data for rare events or a heavily skewed distribution of categories, it becomes essential for models to effectively mine insights from the original imbalanced dataset. This involves employing techniques like data augmentation to generate new insights and rules, enhancing the model’s ability to accurately identify and predict failures.

Originality/value

Previous research has highlighted the complexity of diagnosing faults within imbalanced industrial datasets, often leading to suboptimal predictive accuracy. This paper bridges this gap by introducing a robust framework for Industrial Data-driven Modeling for Imbalanced Fault Diagnosis. It combines data enhancement and cost-sensitive methods to effectively manage the challenges posed by imbalanced datasets, further innovating with a bagging method to refine model optimization. The validation of the proposed approach demonstrates superior accuracy compared to existing methods, showcasing its potential to significantly improve fault diagnosis in industrial applications.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 2 August 2023

Andrea Sestino, Adham Kahlawi and Andrea De Mauro

The data economy, emerging from the current hyper-technological landscape, is a global digital ecosystem where data is gathered, organized and exchanged to create economic value…

Abstract

Purpose

The data economy, emerging from the current hyper-technological landscape, is a global digital ecosystem where data is gathered, organized and exchanged to create economic value. This paper aims to shed light on the interplay of the different topics involved in the data economy, as found in the literature. The study research provides a comprehensive understanding of the opportunities, challenges and implications of the data economy for businesses, governments, individuals and society at large, while investigating its impact on business value creation, knowledge and digital business transformation.

Design/methodology/approach

The authors conducted a literature review that generated a conceptual map of the data economy by analyzing a corpus of research papers through a combination of machine learning algorithms, text mining techniques and a qualitative research approach.

Findings

The study findings revealed eight topics that collectively represent the essential features of data economy in the current literature, namely (1) Data Security, (2) Technology Enablers, (3) Business Implications, (4) Social Implications, (5) Political Framework, (6) Legal Enablers, (7) Privacy Concerns and (8) Data Marketplace. The study resulting model may help researchers and practitioners to develop the concept of data economy in a structured way and provide a subset of specific areas that require further research exploration.

Practical implications

Practically, this paper offers managers and marketers valuable insights to comprehend how to manage the opportunities deriving from a constantly changing competitive arena whose value is today also generated by the data economy.

Social implications

Socially, the authors also reveal insights explaining how the data economy features may be exploited to build a better society.

Originality/value

This is the first paper exploring the data economy opportunity for business value creation from a critical perspective.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Article
Publication date: 6 May 2024

Andreas Gschwentner, Manfred Kaltenbacher, Barbara Kaltenbacher and Klaus Roppert

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various…

Abstract

Purpose

Performing accurate numerical simulations of electrical drives, the precise knowledge of the local magnetic material properties is of utmost importance. Due to the various manufacturing steps, e.g. heat treatment or cutting techniques, the magnetic material properties can strongly vary locally, and the assumption of homogenized global material parameters is no longer feasible. This paper aims to present the general methodology and two different solution strategies for determining the local magnetic material properties using reference and simulation data.

Design/methodology/approach

The general methodology combines methods based on measurement, numerical simulation and solving an inverse problem. Therefore, a sensor-actuator system is used to characterize electrical steel sheets locally. Based on the measurement data and results from the finite element simulation, the inverse problem is solved with two different solution strategies. The first one is a quasi Newton method (QNM) using Broyden's update formula to approximate the Jacobian and the second is an adjoint method. For comparison of both methods regarding convergence and efficiency, an artificial example with a linear material model is considered.

Findings

The QNM and the adjoint method show similar convergence behavior for two different cutting-edge effects. Furthermore, considering a priori information improved the convergence rate. However, no impact on the stability and the remaining error is observed.

Originality/value

The presented methodology enables a fast and simple determination of the local magnetic material properties of electrical steel sheets without the need for a large number of samples or special preparation procedures.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2024

Xiao Xiao, Andreas Christian Thul, Lars Eric Müller and Kay Hameyer

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic…

Abstract

Purpose

Magnetic hysteresis holds significant technical and physical importance in the design of electromagnetic components. Despite extensive research in this area, modeling magnetic hysteresis remains a challenging task that is yet to be fully resolved. The purpose of this paper is to study vector hysteresis play models for anisotropic ferromagnetic materials in a physical, thermodynamical approach.

Design/methodology/approach

In this work, hysteresis play models are implemented to interpret magnetic properties, drawing upon classical rate-independent plasticity principles derived from continuum mechanics theory. By conducting qualitative and quantitative verification and validation, various aspects of ferromagnetic vector hysteresis were thoroughly examined. By directly incorporating the hysteresis play models into the primal formulations using fixed point method, the proposed model is validated with measurements in a finite element (FE) environments.

Findings

The proposed vector hysteresis play model is verified with fundamental properties of hysteresis effects. Numerical analysis is performed in an FE environment. Measured data from a rotational single sheet tester (RSST) are validated to the simulated results.

Originality/value

The results of this work demonstrates that the essential properties of the hysteresis effects by electrical steel sheets can be represented by the proposed vector hysteresis play models. By incorporation of hysteresis play models into the weak formulations of the magnetostatic problem in the h-based magnetic scalar potential form, magnetic properties of electrical steel sheets can be locally analyzed and represented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 16 April 2024

Subhodeep Mukherjee, Ramji Nagariya, K. Mathiyazhagan, Manish Mohan Baral, M.R. Pavithra and Andrea Appolloni

Reverse logistics services are designed to move goods from their point of consumption to an endpoint to capture value or properly dispose of products and materials. Artificial…

Abstract

Purpose

Reverse logistics services are designed to move goods from their point of consumption to an endpoint to capture value or properly dispose of products and materials. Artificial intelligence (AI)-based reverse logistics will help Micro, Small, and medium Enterprises (MSMEs) adequately recycle and reuse the materials in the firms. This research aims to measure the adoption of AI-based reverse logistics to improve circular economy (CE) performance.

Design/methodology/approach

In this study, we proposed ten hypotheses using the theory of natural resource-based view and technology, organizational and environmental framework. Data are collected from 363 Indian MSMEs as they are the backbone of the Indian economy, and there is a need for digital transformation in MSMEs. A structural equation modeling approach is applied to analyze and test the hypothesis.

Findings

Nine of the ten proposed hypotheses were accepted, and one was rejected. The results revealed that the relative advantage (RA), trust (TR), top management support (TMS), environmental regulations, industry dynamism (ID), compatibility, technology readiness and government support (GS) positively relate to AI-based reverse logistics adoption. AI-based reverse logistics indicated a positive relationship with CE performance. For mediation analysis, the results revealed that RA, TR, TMS and technological readiness are complementary mediation. Still, GS, ID, organizational flexibility, environmental uncertainty and technical capability have no mediation.

Practical implications

The study contributed to the CE performance and AI-based reverse logistics literature. The study will help managers understand the importance of AI-based reverse logistics for improving the performance of the CE in MSMEs. This study will help firms reduce their carbon footprint and achieve sustainable development goals.

Originality/value

Few studies focused on CE performance, but none measured the adoption of AI-based reverse logistics to enhance MSMEs’ CE performance.

Details

The International Journal of Logistics Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 20 March 2024

Floriberta Binarti, Pranowo Pranowo, Chandra Aditya and Andreas Matzarakis

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that…

Abstract

Purpose

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that could suit Borobudur and Angkor Wat.

Design/methodology/approach

The study employed local climate zone (LCZ) indicators and ten-year historical climate data to identify similarities and differences in local climate characteristics. Satellite imagery processing was used to create maps of LCZ indicators. Meanwhile, microclimate models were used to analyze sky view factors and wind permeability.

Findings

The study found that the three tropical large-scale archaeological parks have low albedo, a medium vegetation index and high impervious surface index. However, various morphological characteristics, aerodynamic properties and differences in temple stone area and altitude enlarge the air temperature range.

Practical implications

Based on the similarities and differences in local climate, the study formulated mitigation strategies to preserve the sustainability of ancient temples and reduce visitors' heat stress.

Originality/value

The local climate characterization of tropical archaeological parks adds to the number of LCZs. Knowledge of the local climate characteristics of tropical archaeological parks can be the basis for improving thermal conditions.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 18 April 2024

Zhanghuang Xie, Xiaomei Li, Dian Huang, Andrea Appolloni and Kan Fang

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution…

Abstract

Purpose

We consider a joint optimization problem of product platform design and scheduling on unrelated additive/subtractive hybrid machines, and seek to find efficient solution approaches to solve such problem.

Design/methodology/approach

We propose a mathematical formulation for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines, and develop a simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length to solve the problem.

Findings

The simulated annealing-based hyper-heuristic algorithm with adjustable operator sequence length (SAHH-osla) that we proposed can be quite efficient in solving the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Originality/value

To the best of our knowledge, we are one of the first to consider both cost-related and time-related criteria for the problem of simultaneous product platform design and scheduling on unrelated additive/subtractive hybrid machines.

Details

Industrial Management & Data Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 8 March 2024

Hilda Du Plooy, Francesco Tommasi, Andrea Furlan, Federica Nenna, Luciano Gamberini, Andrea Ceschi and Riccardo Sartori

Following the imperative for human-centric digital innovation brought by the paradigm of Industry 5.0, the article aims to integrate the dispersed and multi-disciplinary…

Abstract

Purpose

Following the imperative for human-centric digital innovation brought by the paradigm of Industry 5.0, the article aims to integrate the dispersed and multi-disciplinary literature on individual risks for workers to define, explain and predict individual risks related to Industry 4.0 technologies.

Design/methodology/approach

The paper follows the question, “What is the current knowledge and evidence base concerning risks related to Industry 4.0 technologies, and how can this inform digital innovation management in the manufacturing sector through the lens of the Industry 5.0 paradigm?” and uses the method of systematic literature review to identify and discuss potential risks for individuals associated with digital innovation. N = 51 contributions met the inclusion criteria.

Findings

The literature review indicates dominant trends and significant gaps in understanding risks from a human-centric perspective. The paper identifies individual risks, their interplay with different technologies and their antecedents at the social, organizational and individual levels. Despite this, the paper shows how the literature concentrates in studying risks on only a limited number of categories and/or concepts. Moreover, there is a lack of consensus in the theoretical and conceptual frameworks. The paper concludes by illustrating an initial understanding of digital innovation via a human-centered perspective on psychological risks.

Practical implications

Findings yield practical implications. In investing in the adoption, generation or recombination of new digital technologies in organizations, the paper recommends managers ensure to prevent risks at the individual level. Accordingly, the study’s findings can be used as a common starting point for extending the repertoire of managerial practices and interventions and realizing human-centric innovation.

Originality/value

Following the paradigm of Industry 5.0, the paper offers a holistic view of risks that incorporates the central role of the worker as crucial to the success of digital innovation. This human-centric perspective serves to inform the managerial field about important factors in risk management that can result in more effective targeted interventions in risk mitigation approaches. Lastly, it can serve to reinterpret digital innovation management and propose future avenues of research on risk.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

1 – 10 of 148