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Abstract

Purpose — The author studies forms over finite fields obtained as the determinant of Hermitian matrices and
use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.
Design/methodology/approach — The authors give full proofs for the new results, quoting previous works
by other authors in the proofs. In the introduction, the authors quoted related references.

Findings — The authors get a few theorems, mainly describing some monic polynomial arising as a base
polynomial of a square matrix.

Originality/value — As far as the author knows, all the results are new, and the approach is also new.
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1. Introduction

For any field K, any positive integer 7 and any number of variables #y, . . ., t,,, we call K[ty . . .,
t,,] the polynomial ring over K with variables #,, . . ., £,,,, not the vector space of all polynomial
functions K™ —K. These two rings are isomorphic if and only if the field K is infinite. If K is a
finite field, then the ring of polynomial functions K" —K is isomorphic to
Kl tn) /(& =1, ... 5 —1,). In this paper, we are always taking K finite, with
either #K = g or #K = ¢°, where ¢ is a fixed prime power.

Fix a prime p and a p-power ¢. For any M = (m;) € M, ,(F2), let M denote the matrix
(mg). M is said to be Hermitian if M = M. Note that the diagonal elements of a Hermitian
matrix are elements of [, and that the set of all Hermitian »# X # matrices forms an F, vector
space of dimension 7% We briefly recall the notion of Hermitian geometry for the Galois
degree 2 extension F 2 of [F,. The Frobenius map o : ¢—#“is a generator of the Galois group of
this degree 2 extension. The Hermitian form (i.e. o-sesquilinear form) (,) : [, X [, —F is
defined by the formula

n
(. yun), (01, 0a)) = > vy,
=1
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Fix positive integers m, n and m n X n Hermitian matrices My, ..., M,, € M, ,(F ;). Set
fM],...,Mm(tlv RN tm) = det(thl + thm)

and call it the determinantal polynomial of the Hermitian matrices M;, . . ., M,,,. For m > 2 set

ng ,,,,, Mm,l(tl: ey tm) ::fMlﬁ....Mm,l,ﬂnXn(tlv L) tm)

We say that gy, 1,1, (t1, - - - 5 1) 18 the base polynomial of the Hermitian matrices Mj,
ey M}’l*l'
All polynomials fy, u, (t,...,t,) are homogeneous degree » polynomials with

coefficients in [, (Lemma 1).

The motivation for this paper came from Kippenhahn’s paper on the numerical range, his
definition of the base polynomial f{, ¥, z) and his use of the dual curve of the plane curve {f(x,
y, 2) = 0} to characterize the numerical range (1, 2]), which is even now a source of
inspirations (3, 4]. The numerical range of a matrix is also defined for matrices
MeM,,(F;) (5-8)), using a choice of a certain element geFp2\F, (5, 6). With this
choice for any M eM,,(F.), we get uniquely determined Hermitian matrices
M., M_eM,,(F.) such that M = M, + pM_ (see References [1, 2] for more details).
The field F . is a degree 2 extension of F,. First assume ¢ odd. There is a € F,, which is a
square in [, but not in [F,. We take € F > such that = aand set M, := (M + M'")/2 and
M_:= (M — M7")/2p. Now assume g even. There is ¢ € [, such that the polynomial Ptt+e
has no root in [F,. We call § one of its root in [F 2 (the other one is g + 1). We set M_:=M + M
and M= + DM + pM".

Using M, and M _ one can use Kippelmahn’s definition of the base polynomial of a square
complex matrix and set

bp(M)(x,y,2) = gy, m_(%,9,2) = det(xM . +yM_ + 2l,%,).

Note that bp(M) is a homogeneous degree # polynomial with z” as one of its monomials and
that its coefficient is 1. We call monic such degree n forms. A form f € F,[t1, . . . , £,,] is said to
be concise if there is no linear change of coordinates such that in the new coordinates f does
not depend on all coordinates. For degree 2 forms conciseness is equivalent to the smoothness
of their zero-locus (Remark 10).

In Sections 4 and 5, we study the realizability problem (which monic forms are of the form
bp(A) for some A) for 2 X 2 matrices. At the end of Section 4, we collect several questions
concerning the base polynomials.

We get some negative results, i.e. many matrices have base polynomials not interesting
and unrelated to the numerical range of any non-zero matrix. We prove the following result.

Theorem 1. Fix AeM, ,(Fp)

(i) Assume either A = A or A = BA_. Then bp(A) = 2" if and only if 0is the unique eigenvalue
of A over F,,.

(i) There are q* 2 X 2 matrices A such that A = A, (resp. A = BA_) and bp(4) = 2°

(ii) Assume n = 2. Then bp(A) = 22 if and only if there are a € FpeclF, ceFp delp
such that

—a =, — =d", —2ae = d + cd” Q)

and A = A, + PA_, where



A, - (Ci _Cd) @

A= ( ‘ _de> ®

(i) Assume q even. There are (q — 1)(q — 1) matrices A e M 22(F2) such that bp(A) = AL+
Oand A_+#0. Each such Ais of the form A = A + PA_with A, and A_ asin (2) and (3). Each
such matrix A is obtaining takmgc el \{0} teF,\{0}, settmg d = tcand taking as a and e
the only elements of F, such that a* = cq+ and & = @71

(v) Take q odd. There are at least q° matrices A € M, 2 [qu) such that A, #0, A_ # 0 and
bp(A) = 2% Some of them may be obtained taking A, as in (2) and taking A = A, + BA...

Remark 1. Concerning part (i) of Theorem 1, we have a complete description of the ¢
matrices. The ones with A = A, (resp. A = A _) are the ones described in (2) (resp. (3)) with a,
¢ (resp. ¢, d) as in (1).

We get some positive results (obtaining a monic polynomial as the base polynomial of a
square matrix). This is called the reconstruction problem for monic polynomials. We prove the
case of 2 X 2 matrices, i.e. we prove the following result.

Proposition 1. All monic degree 2 forms are realized as a base polynomial.

Definition 1. Let K beafield. Take f€ K[x3, . . ., x,,]. We say that f depends on # variables or
that it does not depend on < # variables or that it is concise if there is no pair (g, M), where

Me MVL*],M(K%g € KI’_:V], .. "yﬂf]] andﬂx]7 SRS -xn) = g(yl) .. "y1171)7 Where
(yla s ayn—l) = M(xl’ s ’xn)t‘

We say that the polynomial 0 depends on 0 variables. In Section 3, we study the conciseness of
some determinantal polynomial and of some base polynomial, with the main results only for 2
X 2 matrices. We conclude Section 3 with several questions.

We found only a weak connection between the study of our determinantal polynomial and
the (in principle) very similar problem of the description of a homogeneous form as a
determinant of a matrix of linear forms. A. Beauville wrote the beautiful paper [9], which also
contains realization as the determinant of a symmetric matrix of linear forms and as the
Pfaffian of an anti-symmetric matrix. We discuss this topic in Section 5 which studies bp(A4)
for a matrix M eM,m([qu) such that MJr eM,,(F ) and M_eM,,(F,). Of course, it
form = 3.

We thank a referee for useful suggestions.

2. Preliminaries
For any matrix M = (a;) € M,,,(F2) set M @ = (a}). Thus, M is Hermitian if and only if
M = M?. Note that (M, + M) = M\Y + M and that (tM)@ = /M@ for all t € F .

Remark. 2 Assume g = p° for some e > 0. The field F, is the set of allz € [, such that 27 = z
(10, page 1], [11, Theorem 2.5). Fix any a € F,\{0}. Since ¢ + 1 is invertible in F,, the
polynomial #7"! — @ and its derivative (¢ 4 1)#7 have no common zero. Hence, the polynomial
1+ — ghas ¢ + 1 distinct roots in F,. Fix any one of them, b. Since a?~ =1, pr =1 Thus,
beFp. Thus, for any a € F,\ {0} there are exactly ¢ + 1 elements c € F 2 such that cq+1 =a.
Obviously, 0 is the only element ¢ of F 2 such that #/ =0,
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Remark 3. Note that (—1)? = —1 in F,. Since (# + v)? = u? + vo? and (u — v)? = u? +
(D)% =u? — v forallu,v e Fp, det(M(q)) det(M)? for all M € M, ,(F2). Now assume that

M is Hermitian, i.e. assume M = M. Thus, det(M) = det((M (‘”)t) = det(M?) = det(M)".
Hence, det(M) € F, by Remark 2.

Remark 4. For any two Hermitian matrices A,BeM,,(F;z), there is a unique
MeM,,(F,;)such that A = M, and B = M_, the matrix M = A + pB.

Remark 5. Take A,BeM, ,(F;)and a,beF, We have (@A + bB), = aA, + bB, and
(@A + bB)_ = aA_ + bB_. Usually these equalities fail if @ € F2\[F,. For instance, if 4 is
Hermitian, A # 0 and @ = f, then (¢4), = 0, while (¢4)_ = A.

For any A = (a;) € M, ,(F2) and any B = (b;) € M, (F2) let A @ B denote the matrix
(i) €M ysmnim(Fp)suchthat ¢ = a;if1 <i<mand1<j<n,c¢; =0if eitheri>nandj<n
ori<mandj>mn,c; = bi_nj_y,if i >nandj > n The matrix A @ B is called the unitary
direct sum of A and B. Since A ® B), = A, ®B,and A ® B)_ = A_® B_, bp(A &
B) = bp(A)bp(B).

Lemma 1. Fix positive integers m, n and take m n X n Hermitian matrices
Ml, .. Mm GMnn( qz) ThenfMl Mm(tly . ,t ) (S Fq[tl, . ,llm}

Proof. Since M; €M, ,(Fp2) for all 4, foy, a, (t1,- .. tn) EFplti,. .., L) Thus to prove

that s, o, (t1, - - te) EFgltr, - . ., 1), it is sufficient to prove that all its coefficients are
preserved by the Frobenius map xn—>x‘1 Let a € F2 be the coefficient of #}' - - - #. Since the
Frobenius map is additive Al -t is a monom1a1 of f Mq 44444 Ma (t1,...,tn) Recall that

det(M,)" = det(M) Remark 3). Since det(M?) = det((M”)') and M| = (M?)', then
a? = a. Hence, a € F (Remark 2). O

Lemma 2. Take M € M,5(F ) such that M = M. The matrix M has 0 as its unique
eigenvalue in T, if and only if there are a € F, and c € F 2 such that

a ¢
M = (cq —a)’ where

—a% = ! @)

Moreover, there are exactly q* such matrices.

Proof. A 2 X 2 matrix over a field K has 0 as its unique eigenvalue over the algebraic
closure of K if and only if its traces and determinant are 0. Since M = M, these are exactly the
conditions on the entries of M stated in the lemma. For any a € [Fq\{O} there are ({ + 1
elements ¢ € 2 such that ¢ = — % Remark 2). 0is the unique ¢ € F2 such that ¢

Since ([Fq\{O}) =g —1,thereare 1 + (¢ — 1)(g + 1) = ¢* such matrices. D

Remark 6. The definition of bp(A) depends on the definitions of A, and A_, which depend
on the choice of a suitable g € F 2 \[F,. We explore the dependency of A, A_ and bp(A) for
different choices of f if ¢ is odd. Assume g odd. Take a different choice and call it y. We
write A (8), A_(B), bp(A)s, A (y), A_(y) and bp(A), for the matrices and polynomials obtained
from these two choices. Since ¢ is odd, A (f) = A.(y) and A_( A ). Thus,

bp(A), (x.3,2) = bp(A), (. 9.2).



Remark 7. For all integers d > 0 and any field K, let K[xy,z]; denote the set of all
homogeneous degree d polynomials in the variables x, y, z with coefficients in K. The set
[x,y.2]s is a K-vector space of dimension (%42). Fix MeM,,(Fz). We have
bp(M) e Fy[x,,2], for every M € M, ,(F,2) (Lemma 1).

Lemma 3. Takef(x,y,z) € F,lx,y,2], such that fix,y,2) = & + ax + by)" for some a,b € F,.
Then a,bel,

Proof. Since [F, is a perfect field, the plane {z + ax + by = 0} is defined over F,. Thus,
there is c € F,, ¢ # 0, such that ¢(z + ax + by) € F,[x,,2],. Since ¢ # 0, we first get c € [, and
then a,beF,. O

Proof of Theorem 1. :Assume A = A, ie. assume A = 0. Thus, 0p(4)=
det(Ax + 1, x2) € F,[,2). Since the eigenvalues of A are the roots of the polynomial
det(A — tl, % »), we get that bp(4) = 2" if and only if all eigenvalues of A are 0, i.e. we get part (i)
for A=A, If A = BA_, then just note that bp(A) = bp(A_) up to changing the names of the
variables.

Now assume 7z = 2. Part (ii) follows from Lemma 2. Part (iii) follows from part (i1) and the
explicit computation of the coefficient of xy in the base polynomial bp(A).

Now assume 7z = 2 and g even. Since ¢ is a 2-power, —2ae = 01in [,. Let & denote the set of all

(¢c,d) e (Fp \{0})*such that ¢?d 4 cd? = 0. Since g is even, (¢, d) € Uif and only if ¢, d are non-
zero elements of F > and (C)q ' = 1. By Remark 2, the set ¢\{0} is the set of all # € F > such
that #7~1 = 1. Thus for every c € F,2\{0}, there are exactly q- 1 elements d € [qu such that
(c,d) €U, the elements {fc}cp \ (o) Take (c,d) e U. Since [, is a perfect field and ¢ is even, for

every z € [, there is a unique w € [, such that w® = z. Thus for all (¢, d) €U, there are unique
a, e such that ¢, d, a, e satisfy (1).

Now we prove part (v). Assume 7z = 2 and ¢q odd. Take a, c satisfying the first equation of (1)
and set e:=a and d = c. Note that all equations in (1) are satisfied. O

3. Conciseness of determinantal polynomials

Remark 8. Fixafield Kandf e K[xy,...,x,],\{0}. The formfis concise over K if and only
if the degree d hypersurface {f = 0} ¢ P"~!(K)is not a cone. Note that this criterion gives the
same answer if we take the irreducible components of the hypersurface f = 0 with their
multiplicity or not.

Lemmad4. Fixfields K CLCK andf €K|xi,...,x,] » @22, f#0. Assume that K is perfect.
The form f is concise over L if and only if it is concise over K.

Proof. If 1 is concise over a field K’ D K, then f is concise over K. Thus, it is sufficient to
prove that if £is not concise over K, then it is not concise over K. Assume that £is not concise
over K, i.e, that the closed hypersurface X (K) of P"~! (K ) with fas its equation is a cone with,
say, vertex E(K); in the definition of X (K ), we allow the multiplicities of the indecomposable
factors of f (Remark 8). The set E(K) is a non-empty K linear subspace of P! (K). The
decomposition of fin its irreducible factors and the linear subspace E(K ) are defined over a
finite extension K’ of K. Since K[xy, ..., x,] is UFD, we reduce to the case in which f is

irreducible over K. Since K is perfect, each indecomposable factor of fover K has multiplicity
1 and hence, up to a non-zero multiplicative constant, f is uniquely determined by the set

X(K) (no multiplicity is required). Since K is perfect, there is a finite extension L of K’ such
that L is a Galois extension of K, say with Galois group G. The finite group G acts on X (K).
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Set ¢:= dimE (K ). Let v the minims] dimension of a K linear subspace of P"(K) contained in
X (K)and containing E(K). Let S be the set of all »-dimensional K linear subspace of P"~! (K)
contained in X(K). Since X(K) is a cone with vertex E(K), v > 0, UzesL = X(K) and
NiesL = E(K).Since the embedding of X (K) in P"~' (K) is defined over K, Gacts linearly on

P"'(K) and hence it acts on S, ie. each ¢ € G induces a permutation of S. Thus,
g(Nresl) = Niesg(L) for all g € G. Since each g € G induces a permutation of S and

NresL = E(K), we get g(E(K)) = E(K) for all g € G. Thus E(K) is defined over K. Since
E(K) is defined over K, there are n — e linear forms y,, . . . ,¥,_..; € K[x1, . . . , ], such that
EK)={y = =¥,01 =0} Since E(K) is defined over K, there are y,_,,...,
¥, €Kxy,...,x,), such that y, . . ., ¥, is a new system of coordinates of P*~(K) and y,,_,,

., Ypare the homogeneous coordinates of E(K). Set W:={y,_, = - - - =y, = 0}. Note that W
is a linear subspace of P" defined over K, W(K)NEK) =@, dmW(K)+
dimE(K) = n—2and y, . . ., ¥,_._1 are homogeneous coordinates of W. Call W the linear
subspace of K associated to W. Set « ::f‘ 7€ Ko, -3 Vn—e_1]ySince X(K) # P"(K)and

X (K)is a cone with vertex £(K), X (K) N W(_) # W(K),ie.u#0.Since fand W are defined
over K, u€K[yy, . .. ,¥y—o_1); Since X(K) is a cone with vertex E(K), u (as an element of
K[y, - - -,¥,],) is an equation of X (K). Thus, fis not concise over K. O
For each prime power g and each 7 > 2, let m(q, #) be the maximal integer »2 such that there
are m Hermitian matrices My, ..., M, €M,,(Fz) such that the degree »n form
Foton,(ts oo t) EFglty, ..., 1], is concise over F,. By Lemma 4, we get the same
integer m(q, n) if we prescrlbe that Sogsom, (s ) €Fglty, .. 1], s concise over F.

.....

Remark 9. Fixanyq.Let M, €M, ,(F:), 1 <i<n, be the Hermitian matrix with 1 at ¢, 7)
and 0 elsewhere. Since fy, . (t1,--. tm) = [[/4t; Remark 8 and Lemma 4 give
m(q, n) > n.

Lemma 5. Take Hermitian matrices My, . .., M,, € M, ,(Fz2) which are linearly dependent
over By Then fy, i, (t1, ..., tw) 15 not concise over T,

Proof. Suppose for instance that M,, = ciM; + -+ + ¢,—1M,,—1 for some ¢; € F,. Take
the new variables x; = t; + ¢it,, 1 <t <m — 1, and Xy = by Notethat £, o (1, ... ,t )=

th ..... m(xla"':xm 170) O
Proposition 2. For any prime power q we have m(q, 2) = 4.

Proof. The set of all Hermitian M € M, ,(F,) is an n*-dimensional vector space over [,.
Thus, Lemma 5 gives m(q, 2) < 4. Hence, it is sufficient to frove that m q, 2) >4.1f g iseven fix
any ¢ € F2\F,. If ¢ is odd fix any c € F 2\ F, such that ¢ 2022 4 ¢ £ 0. Set

10 0 0 0 0 ¢
(o 0) 2= (o 1) we=(a 5) o= (2 5)

First assume g even. Since ¢ ¢ [F,, then ™ 1#1andc#0. Thus ¢? + ¢ # 0. Consider the degree
2 binary form A(ts, ty) :=c?15 + 1 + (¢ + ¥)tsty. Since the coefficients of /2 and £ in
h(ts, t;) are the same and the coefficient of #5¢4 is non-zero, /(fs, £4) is not a square. Thus, /(fs, 14)
is concise. The binary form ##, in the variables #; and #, is concise. The quaternary form
St stprsan, (B B2, B3, t) = bty + 75 4 17 + (P + )ty is concise, because the
binary forms t;t, and A(t3, ¢4) are concise.



Now assume g odd. We show that we may take c € F 2\ F, such that M — 2072 L 2,
le. 20272 4 1£0.If g > 5, 1t1ssuff101entt0usethat ([F \F,) =¢*—q>4g-4 Now
assumeq = 3. Each c € Fy, ¢ 0, satisfies ¢ = 1 and hence it is sufficient to take ¢ such that ¢*
# — 1, ie. ¢ = 1. The quaternary form Tty sy, (t, by B3, 1) = tito — T —
A+ (P + czq)t3t4 is concise if and only if the binary form u(ts,t):= —c‘”lz‘z
c‘”ltz + (% + ¢*)tsty in the variables f3, £ is concise. The binary form u(fs, t4) is concise,
because it has degree 2, —c7*1 # 0, and the polynomial —c?*1Z + (2 + ¢®)t — ¢7*! has 2
distinct roots over [Fq by our assumptions on c. O

We ask the following question.

Question 1. Fix #n > 2 and a prime power q. Set m = mi(q, n). Is it possible to find m
Hermitian matrices M, . .., M,, such that f,,,  ,, defines a smooth hypersurface (smooth at
all points of P"'(F,))?

Remark 10. Recall that a form fin # variables is concise if and only if the hypersurface
{f = 0} is not a cone (Remark 8 and Lemma 4). For n = 2, Question 1 is trivially true,
because for quadric hypersurfaces not to be a cone is equivalent to smoothness ([10,
Lemma 5.1.1]).

Remark 11. Obviously m(q, n + 1) > m(q, ») for all ¢ and . We do not know the rate of
growth of m(g, ) for a fixed ¢ and 2 > 0. We have m(g, n) < #» for all n (Lemma 5), but we do
not know the values of lim sup,_,, (g, n)/n* and lim inf, ., _m(q,n)/n*

4. Realization of homogeneous polynomials
In this section, we consider the realization problem, ie. we ask for which homogeneous

polynomial f € Fy[t1, ..., 1], there are Hermitian matrices M, ..., M,, € M, ,(F,) such
that f = f, ., The 1nterested reader should consider the problem of the descriptions of
the m-ples (M, ..., M,,) such that f = f;, 4.

,,,,,

We only consider the cases # = 1 and m = 2 and the case m = 3 with M5 = [,,«, 1.e. the
case of base polynomials, and prove Proposition 1.

4.1 Forms in m < 2 variables

Remark 12. Sincedet(M;t;) = det(M, )t} and for each a € F, there is a Hermitian M, such
that det(M;) = a (even with M; diagonal), the realization problem is trivially satisfied
for m = 1.

Remark 13. Here we observe that the set of all binary #-forms realized by some f, 5, 1S
invariant for the action of GL(2, [,) on the variables x, y. For instance, £, v, (v, X) = f a1, 01,
(x,y)and f s, a1, (% + @V, ¥) = far, ans, 111, (%, ¥) for any a € F,. Use that these transformations
generate the group of projective transformations acting on binary forms.

Now take m = 2. We are looking to the realization of binary #-forms, and we call x and y the
two variables and MM; and M, the two Hermitian matrices.

Proposition 3. Take f € Fy[x,y]. Then there ave Hermitian 2 X 2 matrices My, My such
thdtf :f]l/[] Moy
Proof. By Remark 13, it is sufficient to realize at least one element for each orbit for the
action of GL(2, F,).

The binary form 0 is realized by M; = M, = 0. The binary form x” is realized taking
M, = lpx2and M, = 0. The binary form x(x + ¥) is (up to an [, linear transformation of [Fg)

2
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the only one with 2 distinct roots over [F,. This form is realized taking M, = lyxzand My =
(b,]), where b11 = blg = b21 =0and bzz =1

Now we consider binary forms which split over F, but not over F,.

Fi 1rst assume ¢ odd. Up to an F, linear transformation it is sufflclent to realize the form
¥% — @y? with @ not a square in F,. Take c € [z such that ¢™ = g (Remark 2). Take A = 55
and B = (b;), where by; = by = 0,15 = ¢ and by = 2.

Now assume g = 2° even. Since every element of [, is a square, the form ¥4y sphts and
hence up to an [, linear transformation, it is suff1c1ent to reahze the form x* + xy + 8y, where

& € F,\Ohas non-zero absolute trace D(5), where D(u) = Z u® forany u € F, (10, p. 3). Fix
any 6 € F, and take ¢ € F» such that ¢t =5 Take A = |]2X2 and B = (by), Where b1 =1,
b12—(,' b21 = andbgg— O

4.2 Base polynomials

Now we take m = 3, M3 = l,xn, My = A, My =A_ forsome A e M, ,(F,). By Remark 4, it
is not restrictive to the existence of a matrix A such that M; = A, and M, = A_. Wecall x,y
and z the variables. Every degree # base polynomial contains the monomial z” with degree 1.
We call monic such forms.

Question 2. Are there other restrictions?

Remark 14. Let R denote the set of all polynomials sp(A) with A € M 3(F ). Take any
a,befF, and any AeM;3(Fp). Since aclF, we have (A+aA_), =A, +aA_ and
(A+aA_)_=A_Thus, bpA + aA_)x,v,2) = bp(A)(x + ay, y, 2). Hence, R is invariant for
the linear transformations x+—x + ay, y—y, z—2z. Since a € [, we have (A +apA.), = A,
and (A +apA,)_=A_+aA,. Thus, bp(A + apA.)x,y,2) = bp(A)x, ax +,2). Hence, R is
invariant for the linear transformations x—x, y—ax + v, z—z. Since a,b €[, we have
(A4 (@a+pb)yxn). = Ay +al,x,and (A + (@ + fb)lyxn)_ = A_ + bl x,.. Thus, bp(A+
(@4 po)lyxn)(x,9,2) = bp(A)(x,y,2 + ax + by). Thus, R is invariant for the linear
transformations x—x, y—v, z—z + ax + by. Thus, the set R is invariant for all changes of
coordinates (g;) € GL(3, F,) such that gs3 = 1.

Remark 15. Take a monic f(x,y,2) € F,[x,¥, 2], such that f = gh for some monic g, /2 and
0 < a=deg(g) < d. Assume g = bp(A) and i = bp(B) for some AeM,,(Fp)
BeM,_4y-a(Fz). Then f = bp(A @ B). In particular, if f splits over [, as a product of
monic linear forms (we allow multiple linear forms), then f = bp(M) for some M € M, ,(F2).
Now assume that f is the product of # linear forms over [Fq, say f = Ly --L, with
L; = cz; + ax + by, but we allow that some of the forms are not monic. We get [",¢; = 1,and

hence fis the product of the #» monic linear forms z 4 % Lx +° o

Proofof Proposition 1. :By Remark 14, it is sufficient to reahze at least one form for each orbit
for the action of the subgroup of GL(3, [F,) described in Remark 15. The plane conics over [,
are classified in Ref. [10] in terms of their rank.

There is a unique rank 1 monic conic, 2% The binary form z? is realized as a base polynomial
taking M, = M, = 0.

Rank 2 monic conics form 2 orbits, the ones union of 2 lines defined over F, and the one
induced by a form indecomposable over [, but decomposable over [ ». We first check that all
rank 2 monic conics which splits over [, are realized as a base polynomial. For any g, we
realize the polynomial ¢ + x)& + ) taking the matrix A = A, + pA_ = (@) with
a2 = Qo1 = 0, an = 1 and aoo = ﬁ

There is, up to a projective transformation, another rank 2 conic (10, Th. 5.1.6 for ¢ odd, Th.
5.1.7 for q even)).



First assume g odd. We need to represent the equation dx> + z° with d € [, and dnot a square.
Take A = (a;) with a1 = d, a2 = 1 and a12 = a1 = 0 (so that A, = Aand A_ = 0).

Now assume q even, say g = 2° for some e > 0. Since every element of [, is a square, the form
2% + ¢y” splits and hence up to an [F linear transformation it is suff1c1ent to realize as a base
polynomial the form 2* + zy + &7, Where 6 € F,\0 has non-zero absolute trace D(5), where

D(u) = Zi:o u? for any u € [, (10, p. 3). Fix any 6 € F, and take ¢ € F 2 such that It =5
Take A = 0 and B = (b;), where b1 = 1, b1z = ¢, ba; = ¢? and by = 0

For any finite field up to a projective transformation, there is a unique smooth projective conic
({10, Theorems 5.1.6 and 5.1.7]), and we may take z(z + x) — > as its equation. Use the matrix C
= (cz) with c11 = 1, ¢c12 = ¢21 = f and ¢z, = 0, which have 0p(0) = 2z + x) — v% (any ¢). O

Remark 16. Remark 15 and Proposition 1 gives that every reducible monic f € F, [x, 9, 2],
is a base polynomial.

5. M, M_eM,,(F,)

A. Beauville studied the realization over a finite field of a form as the determinant of a
matrix with entries linear forms ([9]). In this section, we use [9] for matrices M € M, ,(F2)
such that M, eM,,,(F,) and M_eM,,(F,). Obviously this very strong assumption
depends on the choice of # € F 2\ F,. For any g, it requires that M 4 M feM an(Fq), butitis
stronger.

Remark 17. Take symmetric matrices A, Be M, ,(F,). Set M := A + pB. Since A, B are
symmetric and with coefficients in [F,, they are Hermitian. Thus, M, = A and M_ = B. The
matrix Ax + By + 21, is symmetric, hence in this case bp(M) is the determinant of a
symmetric matrix of linear forms. Conversely, any symmetric matrix of linear forms over [,
with z appearing only in the diagonal and with all coefficients 1 is obtained in this way for
some symmetric matrices.

Proposition 4. Assume q > (n—1)(n—2)/2+ (n—1)(n—2)\/q. Then every smooth plane
curve of degree n defined over Fy is of the form {fy, y,m, = O} for some My, Mz, M3
€ M,.(F,)

Proof. Let X be a smooth plane curve of degree n defined over F,. The curve X has
genus g:=m — 1)(n — 2)/2. To get a determinantal equation of X over [Fq, itis necessary and
sufficient to find a degree g — 1 line bundle L on X defined over F, and such that @) =

(9, Proposition 3.1). Assume ¢ >g + 2g,/g. Any smooth prOJectlve curve C of genus g
defined over [, satisfies C(F,;) >g + 1 by the Hasse-Weil theorem (12, Theoren 9.18]). A
theorem proved in Refs. [13, 14] and quoted in [15, Proposition 2.2] says that any smooth
genus y curve Csuch that C(F,) >y + 1hasa degree y — 1 line bundle L defined over F, and
with 2°(L) = h'(L) = 0. a

The lower bound on ¢ in Proposition 4 is not sharp. The existence of a line bundle L as in
the proof of Proposition 4 is related to the computational complexity of the multiplication in
finite extensions of a finite field (13-17]).

The paper [18] and its references gives better information on the number of points of
smooth plane curves with a fixed degree and large g. Hasse-Weil bound and related
tools may also be used for singular plane curves (19-21]. See Ref. [22] for results
on Pic’(C)(F,).

Note that given any f € F,[,,2],,f# 0, it is computationally easy to check (a system with
the coefficients of fand its partial derivatives) if the plane curve {f = 0} is smooth (smooth at
all points, not only at its F, points). It is also very easy to check when a trivariate polynomial is
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monic with respect to z. We do not have an always working (or always working for large ¢)
criterion to realize a monic polynomial as bp(A) for some A € M, ,(F,2), but Remark 17 is
sufficient if the monic polynomial is the determinant of a symmetric matrix. If ¢ is odd, this is
the content of [9, Proposition 4.2].
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