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Abstract

Purpose – The author studies forms over finite fields obtained as the determinant of Hermitian matrices and
use these determinatal forms to define and study the base polynomial of a square matrix over a finite field.
Design/methodology/approach – The authors give full proofs for the new results, quoting previous works
by other authors in the proofs. In the introduction, the authors quoted related references.
Findings – The authors get a few theorems, mainly describing some monic polynomial arising as a base
polynomial of a square matrix.
Originality/value – As far as the author knows, all the results are new, and the approach is also new.
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1. Introduction
For any fieldK, any positive integerm and any number of variables t1, . . ., tm,we callK[t1, . . .,
tm] the polynomial ring overKwith variables t1, . . ., tm, not the vector space of all polynomial
functionsKm!K. These two rings are isomorphic if and only if the fieldK is infinite. IfK is a
finite field, then the ring of polynomial functions Km!K is isomorphic to
K½t1; . . . ; tm�=ðtK1 − t1; . . . ; t

K
m − tmÞ. In this paper, we are always taking K finite, with

either #K 5 q or #K 5 q2, where q is a fixed prime power.
Fix a prime p and a p-power q. For any M ¼ ðmijÞ∈Mn;nðFq2Þ, let My denote the matrix

ðmq
jiÞ. M is said to be Hermitian if M 5 My. Note that the diagonal elements of a Hermitian

matrix are elements of Fq and that the set of all Hermitian n3 nmatrices forms an Fq vector
space of dimension n2. We briefly recall the notion of Hermitian geometry for the Galois
degree 2 extension Fq2 of Fq. The Frobenius map σ : t!tq is a generator of the Galois group of
this degree 2 extension. The Hermitian form (i.e. σ-sesquilinear form) h;i : Fn

q2 3 Fn
q2!Fq2 is

defined by the formula

hðu1; . . . ; unÞ; ðv1; . . . ; vnÞid
Xn

i¼1

uqi vi:
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Fix positive integers m, n and m n 3 n Hermitian matrices M 1; . . . ;Mm ∈Mn;nðFq2Þ. Set
f M1 ;...;Mm

ðt1; . . . ; tmÞddetðt1M 1 þ � � � þ tmMmÞ

and call it the determinantal polynomial of the Hermitian matricesM1, . . .,Mm. Form ≥ 2 set

gM1 ;...;Mm�1
ðt1; . . . ; tmÞdf M1 ;...;Mm�1 ;In3 n

ðt1; . . . ; tmÞ:

We say that gM1 ;...;Mm− 1 ;In3 n
ðt1; . . . ; tmÞ is the base polynomial of the Hermitian matrices M1,

. . ., Mm�1.
All polynomials f M1 ;...;Mm

ðt1; . . . ; tmÞ are homogeneous degree n polynomials with
coefficients in Fq (Lemma 1).

The motivation for this paper came from Kippenhahn’s paper on the numerical range, his
definition of the base polynomial f(x, y, z) and his use of the dual curve of the plane curve {f(x,
y, z) 5 0} to characterize the numerical range ([1, 2]), which is even now a source of
inspirations ([3, 4]). The numerical range of a matrix is also defined for matrices
M ∈Mn;nðFq2Þ ([5–8]), using a choice of a certain element β∈ Fq2nFq ([5, 6]). With this
choice for any M ∈Mn;nðFq2Þ, we get uniquely determined Hermitian matrices
Mþ;M− ∈Mn;nðFq2Þ such that M 5 Mþ þ βM� (see References [1, 2] for more details).
The field Fq2 is a degree 2 extension of Fq. First assume q odd. There is α∈ Fq, which is a
square in Fq2, but not in Fq. We take β∈ Fq2 such that β2 5 α and setMþd(M þMy)/2 and
M�d(M�M y)/2β. Now assume q even. There is ε∈ Fq such that the polynomial t2þ tþ «
has no root in Fq. We call β one of its root in Fq2 (the other one is βþ 1). We setM�dMþMy

and Mþd(β þ 1)M þ βMy.
UsingMþ andM�, one can use Kippelmahn’s definition of the base polynomial of a square

complex matrix and set

bpðMÞðx; y; zÞ ¼ gMþ ;M−
ðx; y; zÞ ¼ detðxMþ þ yM− þ zIn3 nÞ:

Note that bp(M) is a homogeneous degree n polynomial with zn as one of its monomials and
that its coefficient is 1. We callmonic such degree n forms. A form f ∈ Fq½t1; . . . ; tm� is said to
be concise if there is no linear change of coordinates such that in the new coordinates f does
not depend on all coordinates. For degree 2 forms conciseness is equivalent to the smoothness
of their zero-locus (Remark 10).

In Sections 4 and 5, we study the realizability problem (which monic forms are of the form
bp(A) for some A) for 2 3 2 matrices. At the end of Section 4, we collect several questions
concerning the base polynomials.

We get some negative results, i.e. many matrices have base polynomials not interesting
and unrelated to the numerical range of any non-zero matrix. We prove the following result.

Theorem 1. Fix A∈Mn;nðFq2Þ.
(i) Assume either A5Aþ or A5 βA�. Then bp(A)5 zn if and only if 0 is the unique eigenvalue

of A over Fq.
(ii) There are q2 2 3 2 matrices A such that A 5 Aþ (resp. A 5 βA�) and bp(A) 5 z2.
(iii) Assume n 5 2. Then bp(A) 5 z2 if and only if there are a∈ Fq, e∈ Fq, c∈Fq2, d∈Fq2

such that

−a2 ¼ cqþ1; �e2 ¼ dqþ1; �2ae ¼ cqd þ cdq (1)

and A 5 Aþ þ βA�, where
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Aþ ¼ a c

cq �a

� �
(2)

A− ¼ e d

d
q �e

� �
(3)

(iv) Assume q even. There are (q� 1)(q2� 1)matrices A∈M 2;2ðFq2Þ such that bp(A)5 z2, Aþ≠

0 andA�≠ 0. Each suchA is of the formA5Aþþ βA�with Aþ andA� as in (2) and (3). Each
such matrix A is obtaining taking c∈ Fq2nf0g, t ∈ Fqnf0g, setting dd tc and taking as a and e

the only elements of Fq such that a2 5 cqþ1 and e2 5 dqþ1.
(v) Take q odd. There are at least q2 matrices A∈M 2;2ðFq2Þ such that Aþ ≠ 0, A� ≠ 0 and

bp(A) 5 z2. Some of them may be obtained taking Aþ as in (2) and taking A 5 Aþ þ βAþ.

Remark 1. Concerning part (i) of Theorem 1, we have a complete description of the q2

matrices. The oneswithA5Aþ (resp.A5 βA�) are the ones described in (2) (resp. (3)) with a,
c (resp. e, d) as in (1).

We get some positive results (obtaining a monic polynomial as the base polynomial of a
square matrix). This is called the reconstruction problem for monic polynomials. We prove the
case of 2 3 2 matrices, i.e. we prove the following result.

Proposition 1. All monic degree 2 forms are realized as a base polynomial.

Definition1. LetK be a field. Take f∈K[x1, . . ., xn].We say that f depends on n variables or
that it does not depend on < n variables or that it is concise if there is no pair (g, M), where
M ∈ Mn�1,n(K), g ∈ K [y1, . . ., yn�1] and f(x1, . . ., xn) 5 g(y1, . . ., yn�1), where

ðy1; . . . ; yn−1Þ ¼ Mðx1; . . . ; xnÞt:
Wesay that the polynomial 0 depends on 0 variables. In Section 3, we study the conciseness of
some determinantal polynomial and of some base polynomial, with themain results only for 2
3 2 matrices. We conclude Section 3 with several questions.

We found only a weak connection between the study of our determinantal polynomial and
the (in principle) very similar problem of the description of a homogeneous form as a
determinant of a matrix of linear forms. A. Beauville wrote the beautiful paper [9], which also
contains realization as the determinant of a symmetric matrix of linear forms and as the
Pfaffian of an anti-symmetric matrix. We discuss this topic in Section 5 which studies bp(A)
for a matrix M ∈Mn;nðFq2Þ such that Mþ ∈Mn;nðFqÞ and M− ∈Mn;nðFqÞ. Of course, it
depends on the choice of β∈ Fq2nFq. Section 5 also contains the use of [9] for f M1 ;...;Mm

, mainly
for m 5 3.

We thank a referee for useful suggestions.

2. Preliminaries

For any matrix M ¼ ðaijÞ∈Mn;nðFq2Þ set M ðqÞ ¼ ðaqijÞ. Thus, M is Hermitian if and only if

Mt 5 M(q). Note that ðM 1 þM 2ÞðqÞ ¼ M
ðqÞ
1 þM

ðqÞ
2 and that (tM)(q) 5 tqM(q) for all t ∈ Fq2.

Remark. 2 Assume q5 pe for some e> 0. The field Fq is the set of all z∈ Fp such that z
q5 z

([10, page 1], [11, Theorem 2.5]). Fix any a∈ Fqnf0g. Since q þ 1 is invertible in Fq, the
polynomial t qþ1� a and its derivative (qþ 1)tq have no common zero. Hence, the polynomial

tqþ1� a has qþ 1 distinct roots in Fq. Fix any one of them, b. Since aq�15 1, bq
2−1 ¼ 1. Thus,

b∈Fq2. Thus, for any a∈ Fqnf0g there are exactly qþ 1 elements c∈Fq2 such that c
qþ1 5 a.

Obviously, 0 is the only element t of Fq2 such that tqþ1 5 0.

Determinantal
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Remark 3. Note that (�1)q 5 �1 in Fq. Since (u þ v)q 5 uq þ vq and (u � v)q 5 uq þ
(�1)qvq5 uq� vq for all u; v∈ Fq2, det(M

(q))5 det(M)q for allM ∈Mn;nðFq2Þ. Now assume that

M is Hermitian, i.e. assumeM5My. Thus, detðMÞ ¼ detððM ðqÞÞtÞ ¼ detðM ðqÞÞ ¼ detðMÞq.
Hence, detðMÞ∈ Fq by Remark 2.

Remark 4. For any two Hermitian matrices A;B∈Mn;nðFq2Þ, there is a unique
M ∈Mn;nðFq2Þ such that A 5 Mþ and B 5 M�, the matrix M 5 A þ βB.

Remark 5. Take A;B∈Mn;nðFq2Þ and a; b∈ Fq. We have (aA þ bB)þ 5 aAþ þ bBþ and
(aA þ bB)� 5 aA� þ bB�. Usually these equalities fail if a∈ Fq2nFq. For instance, if A is
Hermitian, A ≠ 0 and a 5 β, then (aA)þ 5 0, while (aA)� 5 A.

For any A ¼ ðaijÞ∈Mn;nðFq2Þ and any B ¼ ðbijÞ∈Mm;mðFq2Þ let A ⊕ B denote the matrix
ðcijÞ∈Mnþm;nþmðFq2Þ such that cij5 aij if 1≤ i≤ n and 1≤ j≤ n, cij5 0 if either i> n and j≤ n
or i ≤ n and j > n, cij 5 bi�a,j�n if i > n and j > n. The matrix A ⊕ B is called the unitary
direct sum of A and B. Since (A ⊕ B)þ 5 Aþ ⊕ Bþ and (A ⊕ B)� 5 A�⊕ B�, bp(A ⊕

B) 5 bp(A)bp(B).

Lemma 1. Fix positive integers m, n and take m n 3 n Hermitian matrices
M 1; . . . ;Mm ∈Mn;nðFq2Þ. Then f M 1;...;Mm

ðt1; . . . ; tmÞ∈ Fq½t1; . . . ; tm�
Proof. Since Mi ∈Mn;nðFq2Þ for all i, f M1 ;...;Mm

ðt1; . . . ; tmÞ∈ Fq2 ½t1; . . . ; tm�. Thus to prove
that f M1 ;...;Mm

ðt1; . . . ; tmÞ∈ Fq½t1; . . . ; tm�, it is sufficient to prove that all its coefficients are
preserved by the Frobenius map x↦xq. Let α∈Fq2 be the coefficient of t

e1
1 � � � temm . Since the

Frobenius map is additive, αqte11 � � � temm is a monomial of f Mq

1
;...;Mq

m
ðt1; . . . ; tmÞ. Recall that

detðMiÞq ¼ detðM ðqÞ
i Þ (Remark 3). Since detðM ðqÞ

i Þ ¼ detððM ðqÞ
i ÞtÞ and M

y
i ¼ ðMq

i Þt, then
αq 5 α. Hence, α∈ Fq (Remark 2). ,

Lemma 2. Take M ∈M 2;2ðFq2Þ such that M 5 My. The matrix M has 0 as its unique

eigenvalue in Fq if and only if there are a∈ Fq and c∈Fq2 such that

M ¼ a c

cq �a

� �
; where

−a2 ¼ cqþ1 (4)

Moreover, there are exactly q2 such matrices.

Proof. A 2 3 2 matrix over a field K has 0 as its unique eigenvalue over the algebraic
closure ofK if and only if its traces and determinant are 0. SinceM5My, these are exactly the
conditions on the entries of M stated in the lemma. For any a∈ Fqnf0g, there are q þ 1
elements c∈ Fq2 such that cqþ1 5 �a2 (Remark 2). 0 is the unique c∈ Fq2 such that cqþ1 5 0.
Since ðFqnf0gÞ ¼ q− 1, there are 1 þ (q � 1)(q þ 1) 5 q2 such matrices. ,

Remark 6. The definition of bp(A) depends on the definitions ofAþ andA�, which depend
on the choice of a suitable β∈Fq2nFq. We explore the dependency of Aþ, A� and bp(A) for
different choices of β if q is odd. Assume q odd. Take a different choice and call it γ. We
writeAþ(β),A�(β), bp(A)β,Aþ(γ),A�(γ) and bp(A)γ for the matrices and polynomials obtained
from these two choices. Since q is odd, Aþ(β) 5 Aþ(γ) and A−ðγÞ ¼ γ

βA−ðβÞ. Thus,
bpðAÞγðx; y; zÞ ¼ bpðAÞβ

�
x; γβ y; z

�
.
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Remark 7. For all integers d ≥ 0 and any field K, let K[x,y,z]d denote the set of all
homogeneous degree d polynomials in the variables x, y, z with coefficients in K. The set K
[x,y,z]d is a K-vector space of dimension dþ2

2

� �
. Fix M ∈Mn;nðFq2Þ. We have

bpðMÞ∈ Fq½x; y; z�n for every M ∈Mn;nðFq2Þ (Lemma 1).

Lemma 3. Take f ðx; y; zÞ∈ Fq½x; y; z�n such that f(x, y, z)5 (zþ axþ by)n for some a; b∈Fq.
Then a; b∈ Fq.

Proof. Since Fq is a perfect field, the plane {z þ ax þ by 5 0} is defined over Fq. Thus,

there is c∈ Fq, c ≠ 0, such that cðzþ axþ byÞ∈ Fq½x; y; z�1. Since c ≠ 0, we first get c∈ Fq and
then a; b∈ Fq. ,

Proof of Theorem 1. :Assume A 5 Aþ, i.e. assume A� 5 0. Thus, bpðAÞ ¼
detðAxþ In3 nzÞ∈Fq½x; z�. Since the eigenvalues of A are the roots of the polynomial
detðA− tIn3 nÞ, we get that bp(A)5 zn if and only if all eigenvalues ofA are 0, i.e. we get part (i)
for A5 Aþ. If A5 βA�, then just note that bp(A)5 bp(A�) up to changing the names of the
variables.
Now assume n 5 2. Part (ii) follows from Lemma 2. Part (iii) follows from part (ii) and the
explicit computation of the coefficient of xy in the base polynomial bp(A).
Now assume n5 2 and q even. Since q is a 2-power,�2ae5 0 in Fq. Let U denote the set of all

ðc; dÞ∈ ðFq2nf0gÞ2 such that cqdþ cdq5 0. Since q is even, ðc; dÞ∈U if and only if c, d are non-

zero elements of Fq2 and
�
d
c

�q−1 ¼ 1. By Remark 2, the set Fqnf0g is the set of all t ∈ Fq2 such
that tq�1 5 1. Thus for every c∈ Fq2nf0g, there are exactly q � 1 elements d∈Fq2 such that
ðc; dÞ∈U, the elements ftcgt∈Fqnf0g. Take ðc; dÞ∈U. Since Fq is a perfect field and q is even, for

every z∈ Fq there is a unique w∈Fq such thatw
25 z. Thus for all ðc; dÞ∈U, there are unique

a, e such that c, d, a, e satisfy (1).
Now we prove part (v). Assume n5 2 and q odd. Take a, c satisfying the first equation of (1)
and set eda and d d c. Note that all equations in (1) are satisfied. ,

3. Conciseness of determinantal polynomials

Remark8. Fix a fieldK and f ∈K½x1; . . . ; xn�dnf0g. The form f is concise overK if and only

if the degree d hypersurface ff ¼ 0g⊂Pn−1ðKÞ is not a cone. Note that this criterion gives the
same answer if we take the irreducible components of the hypersurface f 5 0 with their
multiplicity or not.

Lemma4. Fix fields K ⊆L⊆K and f ∈K½x1; . . . ; xn�d, d≥ 2, f≠ 0. Assume that K is perfect.
The form f is concise over L if and only if it is concise over K.

Proof. If f is concise over a field K0 � K, then f is concise over K. Thus, it is sufficient to

prove that if f is not concise overK, then it is not concise overK. Assume that f is not concise

overK, i.e, that the closed hypersurfaceXðKÞofPn−1ðKÞwith f as its equation is a cone with,
say, vertex EðKÞ; in the definition of XðKÞ, we allow the multiplicities of the indecomposable

factors of f (Remark 8). The set EðKÞ is a non-empty K linear subspace of Pn−1ðKÞ. The
decomposition of f in its irreducible factors and the linear subspace EðKÞ are defined over a
finite extension K0 of K. Since K[x1, . . ., xn] is UFD, we reduce to the case in which f is

irreducible overK. SinceK is perfect, each indecomposable factor of f overK has multiplicity
1 and hence, up to a non-zero multiplicative constant, f is uniquely determined by the set

XðKÞ (no multiplicity is required). Since K is perfect, there is a finite extension L of K0 such
that L is a Galois extension of K, say with Galois group G. The finite group G acts on XðKÞ.

Determinantal
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Set ed dimEðKÞ. Let v the minimsl dimension of aK linear subspace of PnðKÞ contained in
XðKÞand containingEðKÞ. LetS be the set of all v-dimensionalK linear subspace ofPn−1ðKÞ
contained in XðKÞ. Since XðKÞ is a cone with vertex EðKÞ, v > 0, ∪ L∈SL ¼ XðKÞ and
\L∈SL ¼ EðKÞ. Since the embedding ofXðKÞ inPn−1ðKÞ is defined overK,G acts linearly on

Pn−1ðKÞ and hence it acts on S, i.e. each g ∈ G induces a permutation of S. Thus,
gð\L∈SLÞ ¼ \L∈SgðLÞ for all g ∈ G. Since each g ∈ G induces a permutation of S and

\L∈SL ¼ EðKÞ, we get gðEðKÞÞ ¼ EðKÞ for all g ∈ G. Thus EðKÞ is defined over K. Since

EðKÞ is defined over K, there are n � e linear forms y0; . . . ; yn−e−1 ∈K½x1; . . . ; xn�1 such that

EðKÞ ¼ fy0 ¼ � � � ¼ yn−e−1 ¼ 0g. Since EðKÞ is defined over K, there are yn−e; . . . ;

yn ∈K½x1; . . . ; xn�1 such that y0, . . ., yn is a new system of coordinates of Pn−1ðKÞ and yn�e,

. . ., yn are the homogeneous coordinates ofEðKÞ. SetWd{yn�e5 � � �5 yn5 0}. Note thatW

is a linear subspace of Pn−1 defined over K, W ðKÞ \ EðKÞ ¼ ∅, dimW ðKÞþ
dimEðKÞ ¼ n− 2 and y0, . . ., yn�e�1 are homogeneous coordinates of W. Call ~W the linear

subspace ofK
n
associated toW. Set udf �� ~W ∈K½y0; . . . ; yn− e− 1�d. SinceXðKÞ≠Pn−1ðKÞand

XðKÞ is a conewith vertexEðKÞ,XðKÞ \W ðKÞ≠W ðKÞ, i.e. u≠ 0. Since f andW are defined

over K, u∈K½y0; . . . ; yn− e− 1�d. Since XðKÞ is a cone with vertex EðKÞ, u (as an element of

K½y0; . . . ; yn�d) is an equation of XðKÞ. Thus, f is not concise over K. ,
For each prime power q and each n≥ 2, letm(q, n) be themaximal integerm such that there

are m Hermitian matrices M 1; . . . ;Mm ∈Mn;nðFq2Þ such that the degree n form

f M1 ;...;Mm
ðt1; . . . ; tmÞ∈ Fq½t1; . . . ; tm�n is concise over Fq. By Lemma 4, we get the same

integer m(q, n) if we prescribe that f M1 ;...;Mm
ðt1; . . . ; tmÞ∈ Fq½t1; . . . ; tm�n is concise over Fq.

Remark 9. Fix any q. LetMi ∈Mn;nðFq2Þ, 1 ≤ i ≤ n, be the Hermitian matrix with 1 at (i, i)
and 0 elsewhere. Since f M1;...;Mm

ðt1; . . . ; tmÞ ¼
Qn

i¼1ti, Remark 8 and Lemma 4 give
m(q, n) ≥ n.

Lemma 5. Take Hermitian matrices M 1; . . . ;Mm ∈Mn;nðFq2Þwhich are linearly dependent
over Fq. Then fM1 ;...;Mm

ðt1; . . . ; tmÞ is not concise over Fq.

Proof. Suppose for instance that Mm 5 c1M1 þ � � � þ cm�1Mm�1 for some ci ∈ Fq. Take
the new variables xi5 tiþ citm, 1 ≤ i ≤m� 1, and xm5 tm. Note that f M1 ;...;Mm

ðt1; . . . ; tmÞ ¼
f M1 ;...;Mm

ðx1; . . . ; xm−1; 0Þ. ,

Proposition 2. For any prime power q we have m(q, 2) 5 4.

Proof. The set of all Hermitian M ∈Mn;nðFq2Þ is an n2-dimensional vector space over Fq.
Thus, Lemma 5 givesm(q, 2)≤ 4. Hence, it is sufficient to prove thatm(q, 2)≥ 4. If q is even fix
any c∈ Fq2nFq. If q is odd fix any c∈ Fq2nFq such that c4q � 2c2qþ2 þ c4 ≠ 0. Set

M 1d
1 0
0 0

� �
; M 2d

0 0
0 1

� �
; M 3d

0 c

cq 0

� �
; M 4d

0 cq

c 0

� �
:

First assume q even. Since c∉Fq, then c
q�1

≠ 1 and c≠ 0. Thus cqþ c≠ 0. Consider the degree
2 binary form hðt3; t4Þdcqþ1t23 þ cqþ1t24 þ ðc2 þ c2qÞt3t4. Since the coefficients of t23 and t24 in
h(t3, t4) are the same and the coefficient of t3t4 is non-zero, h(t3, t4) is not a square. Thus, h(t3, t4)
is concise. The binary form t1t2 in the variables t1 and t2 is concise. The quaternary form
f M1 ;M2 ;M3 ;M4

ðt1; t2; t3; t4Þ ¼ t1t2 þ cqþ1t23 þ cqþ1t24 þ ðc2 þ c2qÞt3t4 is concise, because the
binary forms t1t2 and h(t3, t4) are concise.
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Now assume q odd. We show that we may take c∈ Fq2nFq such that c
4q� 2c2qþ2þ c4 ≠ 0,

i.e. c4q�4� 2c2q�2þ 1≠ 0. If q≥ 5, it is sufficient to use that ðFq2nFqÞ ¼ q2 − q > 4q− 4. Now
assume q5 3. Each c∈ F9, c≠ 0, satisfies c85 1 and hence it is sufficient to take c such that c4

≠ � 1, i.e. c4 5 1. The quaternary form f M1 ;M2 ;M3 ;M4
ðt1; t2; t3; t4Þ ¼ t1t2 − cqþ1t23 −

cqþ1t24 þ ðc2 þ c2qÞt3t4 is concise if and only if the binary form uðt3; t4Þd− cqþ1t23 −

cqþ1t24 þ ðc2 þ c2qÞt3t4 in the variables t3, t4 is concise. The binary form u(t3, t4) is concise,
because it has degree 2, �cqþ1

≠ 0, and the polynomial �cqþ1t2 þ (c2 þ c2q)t � cqþ1 has 2
distinct roots over Fq by our assumptions on c. ,

We ask the following question.

Question 1. Fix n ≥ 2 and a prime power q. Set m d m(q, n). Is it possible to find m
Hermitian matricesM1, . . .,Mm such that f M1 ;...;Mm

defines a smooth hypersurface (smooth at

all points of Pm−1ðFqÞ)?
Remark 10. Recall that a form f in n variables is concise if and only if the hypersurface
{f 5 0} is not a cone (Remark 8 and Lemma 4). For n 5 2, Question 1 is trivially true,
because for quadric hypersurfaces not to be a cone is equivalent to smoothness ([10,
Lemma 5.1.1]).

Remark 11. Obviously m(q, n þ 1) ≥ m(q, n) for all q and n. We do not know the rate of
growth ofm(q, n) for a fixed q and n� 0. We havem(q, n)≤ n2 for all n (Lemma 5), but we do
not know the values of lim supn!þ∞mðq; nÞ=n2 and lim infn!þ∞mðq; nÞ=n2.

4. Realization of homogeneous polynomials
In this section, we consider the realization problem, i.e. we ask for which homogeneous
polynomial f ∈ Fq½t1; . . . ; tm�n there are Hermitian matrices M 1; . . . ;Mm ∈Mn;nðFq2Þ such
that f ¼ f M1 ;...;Mm

. The interested reader should consider the problem of the descriptions of
the m-ples (M1, . . ., Mm) such that f ¼ f M1 ;...;Mm

.
We only consider the casesm5 1 andm5 2 and the casem5 3 withM 3 ¼ In3 n, i.e. the

case of base polynomials, and prove Proposition 1.

4.1 Forms in m ≤ 2 variables

Remark12. Since detðM 1t1Þ ¼ detðM 1Þtn1 and for each a∈ Fq there is a HermitianM1 such
that det(M1) 5 a (even with M1 diagonal), the realization problem is trivially satisfied
for m 5 1.

Remark 13. Here we observe that the set of all binary n-forms realized by some f M1;M2
is

invariant for the action of GLð2; FqÞ on the variables x, y. For instance, f M1 ;M2
ðy; xÞ ¼ f M2 ;M1ðx; yÞ and f M1 ;M2

ðxþ ay; yÞ ¼ f M1 ;aM1þM2
ðx; yÞ for any a∈ Fq. Use that these transformations

generate the group of projective transformations acting on binary forms.

Now takem5 2. We are looking to the realization of binary n-forms, and we call x and y the
two variables and M1 and M2 the two Hermitian matrices.

Proposition 3. Take f ∈ Fq½x; y�. Then there are Hermitian 2 3 2 matrices M1, M2 such
that f ¼ f M1 ;M2

.

Proof. By Remark 13, it is sufficient to realize at least one element for each orbit for the
action of GLð2; FqÞ.

The binary form 0 is realized by M1 5 M2 5 0. The binary form x2 is realized taking

M 1 ¼ I23 2 andM2 5 0. The binary form x(x þ y) is (up to an Fq linear transformation of F2
q)
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the only one with 2 distinct roots over Fq. This form is realized takingM 1 ¼ I23 2 andM2 5
(bij), where b11 5 b12 5 b21 5 0 and b22 5 1.

Now we consider binary forms which split over Fq2, but not over Fq.
First assume q odd. Up to an Fq linear transformation it is sufficient to realize the form

x2� ay2 with a not a square in Fq. Take c∈ Fq2 such that c
qþ15 a (Remark 2). TakeA ¼ I23 2

and B 5 (bij), where b11 5 b22 5 0, b12 5 c and b21 5 cq.
Now assume q5 2e even. Since every element of Fq is a square, the form x2þ cy2 splits and

hence up to an Fq linear transformation, it is sufficient to realize the form x2þ xyþ δy2, where

δ∈ Fqn0has non-zero absolute traceD(δ), whereDðuÞ ¼
Pe−1

i¼0u
2i for any u∈ Fq ([10, p. 3]). Fix

any δ∈ Fq and take c∈ Fq2 such that cqþ1 5 δ. Take A ¼ I23 2 and B 5 (bij), where b11 5 1,
b12 5 c, b21 5 cq and b22 5 0. ,

4.2 Base polynomials
Nowwe takem5 3,M 3 ¼ In3 n,M15Aþ,M25A� for someA∈Mn;nðFq2Þ. By Remark 4, it
is not restrictive to the existence of a matrix A such thatM15Aþ andM25A�. We call x, y
and z the variables. Every degree n base polynomial contains the monomial znwith degree 1.
We call monic such forms.

Question 2. Are there other restrictions?

Remark 14. Let R denote the set of all polynomials bp(A) with A∈M 3;3ðFq2Þ. Take any
a; b∈ Fq and any A∈M 3;3ðFq2Þ. Since a∈Fq, we have ðAþ aA−Þþ ¼ Aþ þ aA− and
ðAþ aA−Þ− ¼ A−. Thus, bp(A þ aA�)(x, y, z)5 bp(A)(x þ ay, y, z). Hence,R is invariant for
the linear transformations x↦x þ ay, y↦y, z↦z. Since a∈ Fq, we have ðAþ aβAþÞþ ¼ Aþ
and ðAþ aβAþÞ− ¼ A− þ aAþ. Thus, bp(Aþ aβAþ)(x, y, z)5 bp(A)(x, axþ y, z). Hence,R is
invariant for the linear transformations x↦x, y↦ax þ y, z↦z. Since a; b∈ Fq, we have
ðAþ ðaþ βbÞIn3 nÞþ ¼ Aþ þ aIn3 n and ðAþ ðaþ βbÞIn3 nÞ− ¼ A− þ bIn3 n. Thus, bpðAþ
ðaþ βbÞIn3 nÞðx; y; zÞ ¼ bpðAÞðx; y; zþ axþ byÞ. Thus, R is invariant for the linear
transformations x↦x, y↦y, z↦z þ ax þ by. Thus, the set R is invariant for all changes of
coordinates ðgijÞ∈GLð3; FqÞ such that g33 5 1.

Remark 15. Take a monic f ðx; y; zÞ∈ Fq½x; y; z�n such that f5 gh for some monic g, h and
0 < ad deg(g) < d. Assume g 5 bp(A) and h 5 bp(B) for some A∈Ma;aðFq2Þ,
B∈Mn−a;n−aðFq2Þ. Then f 5 bp(A ⊕ B). In particular, if f splits over Fq as a product of n
monic linear forms (we allow multiple linear forms), then f5 bp(M) for someM ∈Mn;nðFq2Þ.
Now assume that f is the product of n linear forms over Fq, say f 5 L1� � �Ln with
Li5 ciziþ aixþ biy, butwe allow that some of the forms are notmonic.We get

Qn

i¼1ci ¼ 1, and

hence f is the product of the n monic linear forms zþ ai
ci
xþ bi

ci
y.

Proof of Proposition 1. :ByRemark 14, it is sufficient to realize at least one form for each orbit
for the action of the subgroup of GLð3; FqÞ described in Remark 15. The plane conics over Fq

are classified in Ref. [10] in terms of their rank.
There is a unique rank 1 monic conic, z2. The binary form z2 is realized as a base polynomial
taking M1 5 M2 5 0.
Rank 2 monic conics form 2 orbits, the ones union of 2 lines defined over Fq and the one
induced by a form indecomposable over Fq, but decomposable over Fq2. We first check that all
rank 2 monic conics which splits over Fq are realized as a base polynomial. For any q, we
realize the polynomial (z þ x)(z þ y) taking the matrix A 5 Aþ þ βA� 5 (aij) with
a12 5 a21 5 0, a11 5 1 and a22 5 β.
There is, up to a projective transformation, another rank 2 conic ([10, Th. 5.1.6 for q odd, Th.
5.1.7 for q even]).
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First assume q odd.We need to represent the equation dx2þ z2 with d∈ Fq and d not a square.
Take A 5 (aij) with a11 5 d, a22 5 1 and a12 5 a21 5 0 (so that Aþ 5 A and A� 5 0).
Now assume q even, say q5 2e for some e> 0. Since every element of Fq is a square, the form
z2 þ cy2 splits and hence up to an Fq linear transformation it is sufficient to realize as a base
polynomial the form z2 þ zy þ δy2, where δ∈ Fqn0 has non-zero absolute trace D(δ), where

DðuÞ ¼ Pe−1
i¼0u

2i for any u∈ Fq ([10, p. 3]). Fix any δ∈Fq and take c∈ Fq2 such that cqþ1 5 δ.
Take A 5 0 and B 5 (bij), where b11 5 1, b12 5 c, b21 5 cq and b22 5 0.
For any finite field up to a projective transformation, there is a unique smooth projective conic
([10, Theorems 5.1.6 and 5.1.7]), andwemay take z(zþ x)� y2 as its equation. Use thematrixC
5 (cij) with c11 5 1, c12 5 c21 5 β and c22 5 0, which have bp(C) 5 z(z þ x) � y2 (any q). ,

Remark 16. Remark 15 and Proposition 1 gives that every reducible monic f ∈ Fq½x; y; z�3
is a base polynomial.

5. Mþ;M− ∈Mn;nðFqÞ
A. Beauville studied the realization over a finite field of a form as the determinant of a
matrix with entries linear forms ([9]). In this section, we use [9] for matricesM ∈Mn;nðFq2Þ
such that Mþ ∈Mn;nðFqÞ and M− ∈Mn;nðFqÞ. Obviously this very strong assumption

depends on the choice of β∈ Fq2nFq. For any q, it requires thatM þM y
∈Mn;nðFqÞ, but it is

stronger.

Remark 17. Take symmetric matrices A;B∈Mn;nðFqÞ. SetMd A þ βB. Since A, B are
symmetric and with coefficients in Fq, they are Hermitian. Thus,Mþ 5 A andM� 5 B. The
matrix Axþ Byþ zIn;n is symmetric, hence in this case bp(M) is the determinant of a
symmetric matrix of linear forms. Conversely, any symmetric matrix of linear forms over Fq

with z appearing only in the diagonal and with all coefficients 1 is obtained in this way for
some symmetric matrices.

Proposition 4. Assume q≥ ðn− 1Þðn− 2Þ=2þ ðn− 1Þðn− 2Þ ffiffiffi
q

p
. Then every smooth plane

curve of degree n defined over Fq is of the form ff M1 ;M2;M3
¼ 0g for some M 1;M 2;M 3

∈ Mn;nðFqÞ.
Proof. Let X be a smooth plane curve of degree n defined over Fq. The curve X has
genus gd(n� 1)(n� 2)/2. To get a determinantal equation of X over Fq, it is necessary and
sufficient to find a degree g � 1 line bundle L on X defined over Fq and such that h0(L) 5 0
([9, Proposition 3.1]). Assume q≥ g þ 2g

ffiffiffi
q

p
. Any smooth projective curve C of genus g

defined over Fq satisfies CðFqÞ≥ g þ 1 by the Hasse–Weil theorem ([12, Theoren 9.18]). A
theorem proved in Refs. [13, 14] and quoted in [15, Proposition 2.2] says that any smooth
genus γ curve C such that CðFqÞ≥ γ þ 1 has a degree γ � 1 line bundle L defined over Fq and
with h0(L) 5 h1(L) 5 0. ,

The lower bound on q in Proposition 4 is not sharp. The existence of a line bundle L as in
the proof of Proposition 4 is related to the computational complexity of the multiplication in
finite extensions of a finite field ([13–17]).

The paper [18] and its references gives better information on the number of points of
smooth plane curves with a fixed degree and large q. Hasse–Weil bound and related
tools may also be used for singular plane curves ([19–21]). See Ref. [22] for results

on Pic0ðCÞðFqÞ.
Note that given any f ∈ Fq½x; y; z�n, f≠ 0, it is computationally easy to check (a systemwith

the coefficients of f and its partial derivatives) if the plane curve {f5 0} is smooth (smooth at
all points, not only at its Fq points). It is also very easy to checkwhen a trivariate polynomial is
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monic with respect to z. We do not have an always working (or always working for large q)
criterion to realize a monic polynomial as bp(A) for some A∈Mn;nðFq2Þ, but Remark 17 is
sufficient if the monic polynomial is the determinant of a symmetric matrix. If q is odd, this is
the content of [9, Proposition 4.2].
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