COMPLEXITY IN INTERNATIONAL SECURITY

COMPLEXITY IN INTERNATIONAL SECURITY: A HOLISTIC SPATIAL APPROACH

BY

PETER SIMON SAPATY *National Academy of Sciences, Ukraine*

United Kingdom - North America - Japan - India - Malaysia - China

Emerald Publishing Limited Howard House, Wagon Lane, Bingley BD16 1WA, UK

First edition 2020

Copyright © 2020 Emerald Publishing Limited

Reprints and permissions service

Contact: permissions@emeraldinsight.com

No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without either the prior written permission of the publisher or a licence permitting restricted copying issued in the UK by The Copyright Licensing Agency and in the USA by The Copyright Clearance Center. Any opinions expressed in the chapters are those of the authors. Whilst Emerald makes every effort to ensure the quality and accuracy of its content, Emerald makes no representation implied or otherwise, as to the chapters' suitability and application and disclaims any warranties, express or implied, to their use.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-1-78973-716-5 (Print) ISBN: 978-1-78973-715-8 (Online) ISBN: 978-1-78973-717-2 (EPub)

ISOQAR certified Management System, awarded to Emerald for adherence to Environmental standard ISO 14001:2004.

INVESTOR IN PEOPLE

Certificate Number 1985 ISO 14001 To my beloved wife Lilia as the chief inspiration and security during this and previous book's writing.

Contents

List of Figures	xiii
About the Author	xvii
Preface	xix
Acknowledgements	xxi

Chap	ter 1 I	ntroduction	1
1.1.	The Gr	owing World Dynamics and Post-liberal Security	
	Probler	ns	1
1.2.	New O	rganizational and Management Models and	
	Techno	logies	2
	1.2.1.	DARPA Mosaics Concept	3
	1.2.2.	Spatial Grasp Paradigm	4
1.3.	How th	e Book Is Organized	5
Chap	ter 2 V	Vord Security Areas, Bodies and Measures	9
2.1.	Introdu	uction	9
2.2.	Security	y Issues in Concrete Areas	9
	2.2.1.	Epidemics	9
	2.2.2.	World Religious Diversity	10
	2.2.3.	Environmental Dangers	10
	2.2.4.	Refugees Crises	11
	2.2.5.	Armed Conflicts	11
	2.2.6.	Other Areas, Terrorism	12
2.3.	Some I	nternational Security Bodies and Measures	13
	2.3.1.	United Nations	13
	2.3.2.	Security Networks	13
	2.3.3.	New Security Technologies	14
2.4.	Conclu		14

Chap	ter 3 S	patial Grasp Model and Technology	15
3.1.	Introdu	uction	15
3.2.	General SGT Idea		
3.3.	Main F	Features of SGL	16
	3.3.1.	SGL Recursive Structure	17
		SGL Basic Elements	18
	3.3.3.	More on SGL Details	19
3.4.		istributed Interpretation Basics	24
3.5.	SGL Ir	terpreter Organization	25
		Components and Organization of SGL Interpreter	25
		Data Structures of the Interpreter	25
		Functional Processors of the Interpreter	29
		Tracks-based Automatic Command and Control	31
		n of SGT to Gestalt Psychology and Theory	34
3.7.	Conclu	sion	35
Chap	ter 4 S	patial Grasp Language (SGL)	37
	Introdu		37
4.2.	Full SC	GL Syntax and Main Constructs	37
	SGL Top-level		39
4.4.		onstants	41
		Information	42
		Physical Matter	43
		Custom Constants	43
		Special Constants	44
		Compound Constants, or Grasps	45
4.5.		ariables	46
		Global Variables	46
		Heritable Variables	46
		Frontal Variables	47
		Nodal Variables	47
		Environmental Variables	48
4.6.	SGL R		51
	4.6.1.		51
	4.6.2.		52
	4.6.3.	Movement	53
	4.6.4.	Creation	54
	4.6.5.	Echoing	55
	4.6.6.	Verification	59
	4.6.7.	Assignment	60
	4.6.8.	Advancement	60
	4.6.9.	Branching	62

	4.6.10. Transference	66
	4.6.11. Exchange	66
	4.6.12. Timing	67
	4.6.13. Qualification	68
	4.6.14. Grasping	69
4.7.	Elementary Programming Examples in SGL	70
4.8.	Conclusion	71
Chap	oter 5 Security Related Management Examples under SGT	73
5.1.	Introduction	73
5.2.	Finding Suspects Worldwide	73
5.3.	Controlling and Impacting the Spread of Conflict	74
5.4.	Distributed Simulation of Territorial Conquest	76
5.5.	Collective Evacuation from a Disaster Zone	77
5.6.	Conclusion	78
Chap	oter 6 Networked Security Related Solutions	79
6.1.	Introduction	79
6.2.	Network Management Basics	79
	6.2.1. Network Creation	79
	6.2.2. Finding and Collecting Any Path between Nodes	80
	6.2.3. Spanning Tree (ST) from a Node to All Other Nodes	81
	6.2.4. Shortest Path Tree (SPT) from a Node to All	
	Other Nodes	82
	6.2.5. Creating RT from All Nodes to All Other Nodes	84
6.3.	Distributed Operations on Networked Structures	86
	6.3.1. Finding Strongest Sub-networks or Cliques	87
	6.3.2. Discovering Weakest or Articulation Points	88
	6.3.3. Changing Network Structures	88
6.4.	Finding Centres of Different Communities and	
	Distances between Them	90
6.5.	Conclusion	92
Chap	oter 7 Managing Security by Spatial Control of Moving Objects	93
7.1.	Introduction	93
7.2.	Missile Defence Scenario Example	93
	7.2.1. Proceeding through Missile Defence Main Stages	93
	7.2.2. Expressing Missile Defence Management in SGL	94
7.3.	Tracing Complexly Moving Objects by Distributed	
	Sensor Networks	95

7.4.	-	Objects Movement	97
	7.4.1.	Using Virtual Object Copies	97
	7.4.2.	Space Navigation with Collision Avoidance	<u>98</u>
7.5.		ging Refugees Flow	99
7.6.	Conclu	ision	100
Chaj	pter 8	Investigating Nuclear War Dangers under SGT	103
8.1.	Introd	uction	103
8.2.	Interna	ational Conflicts and Their Probabilities	103
	8.2.1.	Complexity of Relations between Countries	103
	8.2.2.	World Nuclear Powers and Weapons Distribution	104
	8.2.3.	Evaluating Probabilities of Nuclear War	105
8.3.	World	Nuclear Danger Patterns in SGL	105
	8.3.1.	A 3-node Danger Pattern	106
	8.3.2.	More Complex 4-node Danger Pattern	108
	8.3.3.	Danger Pattern with Multiple Nodes	109
8.4.	Conclu	ision	112
Cha	pter 9	Distributed Mosaic-based Organizations	113
9.1.	Introd	uction	113
9.2.	The D	ARPA Mosaic Concept	113
9.3.	SGT-b	based Distributed Mosaic Simulation	116
	9.3.1.	Networked Representation of Mosaic Space	116
	9.3.2.	Grouping Particular Type Neighboring Elements	116
	9.3.3.		
		Element	117
9.4.	Combi	ining Swarming with Hierarchical Command and	
	Contro	bl	122
	9.4.1.	Initial Distribution of Networked Units	122
	9.4.2.	Swarm Movement Scenario	122
	9.4.3.	Finding Topologically Central Unit	123
	9.4.4.	Creating Runtime Infrastructure	123
	9.4.5.	Targets Collection and Distribution and Impact	123
	9.4.6.	Full Scenario Integration	124
9.5.	Swarm	against Swarm Aerial Scenario	125
9.6.	Distrib	outed Driverless Platoon Management	126
	9.6.1.	Normal Management Starting from Platoon's Head	126
	9.6.2.	Management of a Fragmented Platoon	127
	9.6.3.		128
9.7.	Conclu	ision	128

Chapte	er 10 Conclusions	131
10.1.	Explored Features of Word Security Problems and	
	Their SGT Solutions	131
10.2.	Future Plans	133
References		135
Index		153

List of Figures

Chapter 2

Figure 2.1.	Ebola Outbreak in Africa with Air Traffic Connections to the Rest of the World.	10
Figure 2.2.	World Colour-coded Map Denoting Different Religious Affiliations	11
Chapter 3		
Figure 3.1.	The Basic Idea of SGT: Controlled Navigation, Matching and Grasping of Physical, Virtual and Execution Spaces	16
Figure 3.2.	Multi-source Space Coverage and Matching	16
Figure 3.3.	Spreading Spatial Patterns and Creation of Distributed Infrastructures	17
Figure 3.4.	SGL Recursive Syntax	18
Figure 3.5.	Spatial Interpretation of SGL Scenarios	24
Figure 3.6.	Distributed Operational and Infrastructures Knowledge under SGT	25
Figure 3.7.	SGL Interpreter Main Components and Their Interactions	26
Figure 3.8.	Main Track Components	32
Figure 3.9.	Forward World Grasping.	32
Figure 3.10.	Echoing and Tracks Optimization	33
Figure 3.11.	Further World Grasping	34
Figure 3.12.	Gestalt Explaining Examples	34
Chapter 4		
Figure 4.1.	Repeated Network Navigation with Self-spreading- parallelizing SGL Scenario.	70
Chapter 5		
Figure 5.1.	Spatial Worldwide Search for Individuals with the Return of Data Found.	74
Figure 5.2.	Spatial Coverage and Impact of the Evolving Distributed Processes.	75
Figure 5.3.	Spatial Simulation of the Territory Coverage by Conflicting Forces.	77

Figure 5.4.	Collective Evacuation from a Disaster Zone: (a) Initial State; (b) Evacuation in Progress.	78
Chapter 6		
Figure 6.1.	Distributed Network Creation.	80
Figure 6.2.	Reaching a Node from Another Node	81
Figure 6.3.	Creating Any ST from a Node to all Other Nodes	82
Figure 6.4.	Creating SPT from a Node to all Other Nodes.	83
Figure 6.5.	Registering in the SPT Root Node the Shortest Paths to all Other Nodes	84
Figure 6.6.	Routing Tables in Nodes for SPT of Figure 6.4	85
Figure 6.7.	SPTs from All Nodes of the Network to all Other Nodes	86
Figure 6.8.	Routing Tables Providing Shortest Paths from All Nodes to all Other Nodes of the Network.	86
Figure 6.9.	Finding Strongest Parts, or Cliques, in the Network	87
Figure 6.10.	Weakest or Aticulation Points of the Network	88
Figure 6.11.	Removing All Links Between Nodes of Certain Cliques	89
Figure 6.12.	Removing All Articulation Nodes in the Network	90
Figure 6.13.	Finding Centres of Different Communities.	90
Figure 6.14.	Communities May Become Too Close to Each Other	92
Chapter 7		
Figure 7.1.	Picking Up a Hostile Missile	94
Figure 7.2.	Distributed Objects Tracking by a Sensor Network	96
Figure 7.3.	Simulating Moving Physical Objects in Space by Their Propagating Virtual Copies.	97
Figure 7.4.	Investigating Proper Area for Collision Avoidance for the Vehicle's Next Waypoints.	98
Figure 7.5.	Simulation and Management of Movement of Refugees to the Desired Destinations	99
Chapter 8		
Figure 8.1.	Main Players and Powers and Types of Their Relationships in the Middle East	104
Figure 8.2.	A Simple 3-node Danger Pattern	106
Figure 8.3.	Representing the 3-node Pattern by a Path Through All Nodes	106
Figure 8.4.	A 4-node Danger Pattern	108

Figure 8.5.	Representing the 4-node Pattern by a Path Through All Nodes.	109
Figure 8.6.	Multiple Nodes Danger Pattern	110
Figure 8.7.	Sequential-parallel Representation of the Multiple Nodes Pattern.	110
Figure 8.8.	A Possible Worldwide Match by the Discussed Patterns	111
Chapter 9		
Figure 9.1.	Grasping the Whole While Parts-tiles Missing	114
Figure 9.2.	Practical Experiments on Perception of Wholeness of Incomplete Figures.	115
Figure 9.3.	Mosaic Space Simplified Model	116
Figure 9.4.	Links to Neighboring Tiles: (a) Direct_Neighbors; (b) Corner_Neighbors; (c) All_Neighbors	117
Figure 9.5.	Grouping of Direct Neighbors Under Threshold Given	118
Figure 9.6.	Discovering a Danger on a Distributed Mosaics	118
Figure 9.7.	Finding a Full Chain of Certain Elements Surrounding the Danger Tile.	119
Figure 9.8.	Setting Cooperation Between All Neighboring Elements of the Full Chain Found	120
Figure 9.9.	The Final Elimination of the Danger Object	121
Figure 9.10.	Networked UCAVs	122
Figure 9.11.	Runtime Finding of Central Unit.	123
Figure 9.12.	Creating Runtime Distributed Operational Infrastructure	124
Figure 9.13.	Swarm Against Swarm Fight Scenario Ideas	125
Figure 9.14.	Regular Collective Platoon Management.	127
e	Collective Management of a Fragmented Platoon	
Figure 9.16.	Recovery of the Platoon's Structure	128

About the Author

Peter Simon Sapaty, Chief Research Scientist at the Ukrainian Academy of Sciences, has been researching networked systems for five decades. Outside of Ukraine, he has worked in former Czechoslovakia (now the Slovak Republic), Germany, the UK, Canada and Japan as a Group Leader, Alexander von Humboldt Researcher, and invited and Visiting Professor. He launched and chaired the SIG on Mobile Cooperative Technologies in Distributed Interactive Simulation project in the US, and he invented a distributed control technology that resulted in a European patent. Dr Sapaty has published several books and over 200 papers, and he has worked with several international scientific journals, including in the role of Editor-in-Chief.

Preface

The current book reflects our decades of dealing with large distributed networked systems, with the gained practical and theoretical experience allowing for their effective seeing, comprehending and impacting as a whole, from above rather than inside, with capabilities for the latter too. And this experience appeared to be close to the gestalt psychology and theory highlighting the unique quality of human (and may not only) brain to directly grasp the wholeness of different phenomena while treating parts, which may not be complete, in the context of this whole, rather than vice versa.

We have strengthened this holistic vision by a special, constantly evolving, distributed programming model and technology, operating not so inside system components but rather above and between them. This resulted in a possibility of extrapolating holistic qualities of a concentrated brain to dynamic distributed systems while providing their integral goal-driven management and behaviour in real-time and often ahead of it. The current, fifth, book on this paradigm and resultant networking technology is examining the application of the accumulated experience to analysis and management of national and international security problems, especially those caused by the world's growing human and environmental dynamics and unpredictability in the twenty-first century.

These security problems may be massive, distributed and spatial in nature, potentially appearing any time in any world points, simultaneously covering large territories, also involving different cultures, religions, traditions and legislation. They can be caused by complex patterns of international relations, may need continuous monitoring of world dynamics with numerous moving objects, whether technical or human, in terrestrial and celestial spaces. The existing security bodies, with often outdated world information collected in a centralized way, also capable of becoming dysfunctional, may even happen to represent part of the security problems rather than their solutions. We will be addressing many such security problems while offering exemplary solutions based on the spatial grasp technology (SGT) described in the current and previous books.

The growing world dynamics and international instability and insecurity inspired the urgent search for radically new models guaranteeing not only prosperity and safety but even survivability in rapidly changing environments, with the use of all available, scattered, casual, even not perfect resources, which should work together as one system. And, this is just in line with the ideology and methodology of SGT being developed for the last decades and in different countries. Another related example is the latest DARPA Mosaic Warfare concept, discussed as a special chapter in this book, which may have an important influence on global security too.

Peter Simon Sapaty

Acknowledgements

To the following persons and organizations who supported this book:

John Page, University of New South Wales, Australia, for numerous and frank discussions related to unmanned systems, massive collective robotics, including such controversial issues as legality and ethics of using unmanned systems in combat, which may be inevitably raised up in relation to complex international security operations; also, most productive was cooperation with Jon within the board of *International Journal of Intelligent Unmanned Systems* published by Emerald.

Bob Nugent (CDR, USN, Retired), Virginia Tech and Catholic University of America's Busch School of Business, USA, with whom the author notes numerous discussions on advanced command and control in operational settings marked by uncertainty and dynamically changing goals and conditions, such as autonomous systems and international security networks. These discussions have stimulated the joint detailed analysis and connection with the latest DARPA Mosaic Warfare concept mentioned in the book.

Journal of International Relations and Diplomacy, David Publishing Company, and personally Melian Lee, for the support of author's publications mentioned in this book and fruitful cooperation within the editorial team, where the journal's orientation on most recent world developments in international relations, security studies, politics, military study, foreign affairs and many others was extremely important and stimulating for this book preparation and writing.

Vasily Begun, dealing with security methods at the Institute of Mathematical machines and Systems of the National Academy of Sciences of Ukraine, with whom the author had numerous discussions on how to anticipate and measure emerging security threats on both national and international levels, and how practically organize effective security procedures under limited financial and human resources and especially within existing state institutions.

Alexander Reznick, engaged in system management at the Institute of Mathematical Machines and Systems of the National Academy of Sciences of Ukraine, with whom the author cooperated for decades and whose projects using neural networks for control of complex dynamic systems influenced security methods considered in the book, with the described SGT capable of simulating the use of neural networks in a global scale.

Svitlana Tymchyk, Natalia Karevina, and Marina Hoshuk, the editors and producers of the *Mathematical Machines and Systems* journal of the National Academy of Sciences of Ukraine, for the friendship and lasting support of the author's regular publications in the journal, including those mentioned in this book, where quick and professional editing and translation (as the journal is trilingual: Ukrainian, Russian and English) of the submitted material was really impressive.